數(shù)學(xué)解題思想方法有哪些
一.數(shù)學(xué)思想方法總論
高中數(shù)學(xué)一線牽,代數(shù)幾何兩珠連;
三個(gè)基本記心間,四種能力非等閑.
常規(guī)五法天天練,策略六項(xiàng)時(shí)時(shí)變,
精研數(shù)學(xué)七思想,誘思導(dǎo)學(xué)樂無邊.
一 線:函數(shù)一條主線(貫穿教材始終)
二 珠:代數(shù)、幾何珠聯(lián)璧合(注重知識交匯)
三 基:方法(熟) 知識(牢) 技能(巧)
四能力:概念運(yùn)算(準(zhǔn)確)、邏輯推理(嚴(yán)謹(jǐn))、
空間想象(豐富)、分解問題(靈活)
五 法:換元法、配方法、待定系數(shù)法、分析法、歸納法.
六策略:以簡馭繁,正難則反,以退為進(jìn),化異為同,移花接木,以靜思動(dòng).
七思想:函數(shù)方程最重要,分類整合常用到,
數(shù)形結(jié)合千般好,化歸轉(zhuǎn)化離不了;
有限自將無限描,或然終被必然表,
特殊一般多辨證,知識交匯步步高.
二.數(shù)學(xué)知識方法分論:
集合與邏輯
集合邏輯互表里,子交并補(bǔ)歸全集.
對錯(cuò)難知開語句,是非分明即命題;
縱橫交錯(cuò)原否逆,充分必要四關(guān)系.
真非假時(shí)假非真,或真且假運(yùn)算奇.
函數(shù)與數(shù)列
數(shù)列函數(shù)子母胎,等差等比自成排.
數(shù)列求和幾多法?通項(xiàng)遞推思路開;
變量分離無好壞,函數(shù)復(fù)合有內(nèi)外.
同增異減定單調(diào),區(qū)間挖隱最值來.
三角函數(shù)
三角定義比值生,弧度互化實(shí)數(shù)融;
同角三類善誘導(dǎo),和差倍半巧變通.
解前若能三平衡,解后便有一脈承;
角值計(jì)算大化小,弦切相逢異化同.
方程與不等式
函數(shù)方程不等根,常使參數(shù)范圍生;
一正二定三相等,均值定理最值成.
參數(shù)不定比大小,兩式不同三法證;
等與不等無絕對,變量分離方有恒.
解析幾何
聯(lián)立方程解交點(diǎn),設(shè)而不求巧判別;
韋達(dá)定理表弦長,斜率轉(zhuǎn)化過中點(diǎn).
選參建模求軌跡,曲線對稱找距離;
動(dòng)點(diǎn)相關(guān)歸定義,動(dòng)中求靜助解析.
立體幾何
多點(diǎn)共線兩面交,多線共面一法巧;
空間三垂優(yōu)弦大,球面兩點(diǎn)劣弧小.
線線關(guān)系線面找,面面成角線線表;
等積轉(zhuǎn)化連射影,能割善補(bǔ)架通橋.
排列與組合
分步則乘分類加,欲鄰需捆欲隔插;
有序則排無序組,正難則反排除它.
元素重復(fù)連乘法,特元特位你先拿;
平均分組階乘除,多元少位我當(dāng)家.
二項(xiàng)式定理
二項(xiàng)乘方知多少,萬里源頭通項(xiàng)找;
展開三定項(xiàng)指系,組合系數(shù)楊輝角.
整除證明底變妙,二項(xiàng)求和特值巧;
兩端對稱誰最大?主峰一覽眾山小.
概率與統(tǒng)計(jì)
概率統(tǒng)計(jì)同根生,隨機(jī)發(fā)生等可能;
互斥事件一枝秀,相互獨(dú)立同時(shí)爭.
樣本總體抽樣審,獨(dú)立重復(fù)二項(xiàng)分;
隨機(jī)變量分布列,期望方差論偽真.
數(shù)學(xué)常用的數(shù)學(xué)思想方法主要有:用字母表示數(shù)的思想,數(shù)形結(jié)合的思想,轉(zhuǎn)化思想 (化歸思想),分類思想,類比思想,函數(shù)的思想,方程的思想,無逼近思想等等。
1.用字母表示數(shù)的思想:這是基本的數(shù)學(xué)思想之一 .在代數(shù)第一冊第二章“代數(shù)初步知識”中,主要體現(xiàn)了這種思想。
2.數(shù)形結(jié)合:是數(shù)學(xué)中最重要的,也是最基本的思想方法之一,是解決許多數(shù)學(xué)問題的有效思想?!皵?shù)缺形時(shí)少直觀,形無數(shù)時(shí)難入微”是我國著名數(shù)學(xué)家華羅庚教授的名言,是對數(shù)形結(jié)合的作用進(jìn)行了高度的概括。
3.轉(zhuǎn)化思想:在整個(gè)初中數(shù)學(xué)中,轉(zhuǎn)化(化歸)思想一直貫穿其中。轉(zhuǎn)化思想是把一個(gè)未知(待解決)的問題化為已解決的或易于解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數(shù)學(xué)基本思想方法之一。
4.分類思想:有理數(shù)的分類、整式的分類、實(shí)數(shù)的分類、角的分類,三角形的分類、四邊形的分類、點(diǎn)與圓的位置關(guān)系、直線與圓的位置關(guān)系,圓與圓的位置關(guān)系等都是通過分類討論的。
5.類比:類比推理在人們認(rèn)識和改造客觀世界的活動(dòng)中具有重要意義.它能觸類旁通,啟發(fā)思考,不僅是解決日常生活中大量問題的基礎(chǔ),而且是進(jìn)行科學(xué)研究和發(fā)明創(chuàng)造的有力工具.
6.函數(shù)的思想 :辯證唯物主義認(rèn)為,世界上一切事物都是處在運(yùn)動(dòng)、變化和發(fā)展的過程中,這就要求我們教學(xué)中重視函數(shù)的思想方法的教學(xué)。
7.方程:是初中代數(shù)的主要內(nèi)容.初中階段主要學(xué)習(xí)了幾類方程和方程組的解法,在初中階段就要形成方程的思想.所謂方程的思想,就是突出研究已知量與未知量之間的等量關(guān)系,通過設(shè)未知數(shù)、列方程或方程組,解方程或方程組等步驟,達(dá)到求值目的的解題思路和策略,
擴(kuò)展資料:
函數(shù)思想,是指用函數(shù)的概念和性質(zhì)去分析問題、轉(zhuǎn)化問題和解決問題。方程思想,是從問題的數(shù)量關(guān)系入手,運(yùn)用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型(方程、不等式、或方程與不等式的混合組),然后通過解方程(組)或不等式(組)來使問題獲解。
從問題的整體性質(zhì)出發(fā),突出對問題的整體結(jié)構(gòu)的分析和改造,發(fā)現(xiàn)問題的整體結(jié)構(gòu)特征,善于用“集成”的眼光,把某些式子或圖形看成一個(gè)整體,把握它們之間的關(guān)聯(lián),進(jìn)行有目的的、有意識的整體處理。整體思想方法在代數(shù)式的化簡與求值、解方程(組)、幾何解證等方面都有廣泛的應(yīng)用。
參考資料:百度百科-數(shù)學(xué)思想
一、用字母表示數(shù)的思想
這是基本的數(shù)學(xué)思想之一 .在代數(shù)第一冊第二章“代數(shù)初步知識”中,主要體現(xiàn)了這種思想。
例如: 設(shè)甲數(shù)為a,乙數(shù)為b,用代數(shù)式表示:(1)甲乙兩數(shù)的和的2倍:2(a+b)(2)甲數(shù)的2倍與乙數(shù)的5倍差:2a-5b
二、數(shù)形結(jié)合的思想
“數(shù)形結(jié)合”是數(shù)學(xué)中最重要的,也是最基本的思想方法之一,是解決許多數(shù)學(xué)問題的有效思想?!皵?shù)缺形時(shí)少直觀,形無數(shù)時(shí)難入微”是我國著名數(shù)學(xué)家華羅庚教授的名言,是對數(shù)形結(jié)合的作用進(jìn)行了高度的概括.數(shù)學(xué)教材中下列內(nèi)容體現(xiàn)了這種思想。
1、數(shù)軸上的點(diǎn)與實(shí)數(shù)的一一對應(yīng)的關(guān)系。
2、平面上的點(diǎn)與有序?qū)崝?shù)對的一一對應(yīng)的關(guān)系。
3、函數(shù)式與圖像之間的關(guān)系。
4、線段(角)的和、差、倍、分等問題,充分利用數(shù)來反映形。
5、解三角形,求角度和邊長,引入了三角函數(shù),這是用代數(shù)方法解決何問題。
6、“圓”這一章中,圓的定義,點(diǎn)與圓、直線與圓、圓與圓的位置關(guān)系等都是化為數(shù)量關(guān)系來處理的。
7、統(tǒng)計(jì)初步中統(tǒng)計(jì)的第二種方法是繪制統(tǒng)計(jì)圖表,用這些圖表的反映數(shù)據(jù)的分情況,發(fā)展趨勢等。實(shí)際上就是通過“形”來反映數(shù)據(jù)扮布情況,發(fā)展趨勢等。實(shí)際上就是通過“形”來反映數(shù)的特征,這是數(shù)形結(jié)合思想在實(shí)際中的直接應(yīng)用。
三、轉(zhuǎn)化思想 (化歸思想)
在整個(gè)初中數(shù)學(xué)中,轉(zhuǎn)化(化歸)思想一直貫穿其中。轉(zhuǎn)化思想是把一個(gè)未知(待解決)的問題化為已解決的或易于解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數(shù)學(xué)基本思想方法之一。下列內(nèi)容體現(xiàn)了這種思想:
1、分式方程的求解是分式方程轉(zhuǎn)化為前面學(xué)過的一元二次方程求解,這里把待解決的新問題化為已解決的問題來求解,體現(xiàn)了轉(zhuǎn)化思想。
2、解直角三角形;把非直角三形問題化為直角三角形問題;把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題。
3、證明四邊形的內(nèi)角和為360度.是把四邊形轉(zhuǎn)化成兩個(gè)三角形的.同時(shí)探索多邊形的內(nèi)角和也是利用轉(zhuǎn)化的思想的.
四、分類思想
有理數(shù)的分類、整式的分類、實(shí)數(shù)的分類、角的分類,三角形的分類、四邊形的分類、點(diǎn)與圓的位置關(guān)系、直線與圓的位置關(guān)系,圓與圓的位置關(guān)系等都是通過分類討論的。
你問的是什么層次?
1、數(shù)學(xué)分析方法的基本內(nèi)容是數(shù)學(xué)化、模型化和計(jì)算機(jī)化。從數(shù)學(xué)角度看,數(shù)學(xué)中發(fā)現(xiàn)了許多有實(shí)用價(jià)值的手段,如線性規(guī)劃、整數(shù)規(guī)劃、動(dòng)態(tài)規(guī)劃、對策論、排隊(duì)論、存貨模型、調(diào)度模型、概率統(tǒng)計(jì)等等,對定量化的分析與決斷起到了重大的推動(dòng)作用;從模型化角度看,每一種數(shù)學(xué)手段都包括了解決決策問題的具體數(shù)學(xué)模型,人們可以借助于模型找出自己所需了解的問題的答案;從計(jì)算機(jī)化的角度看,人們可以借用電子計(jì)算機(jī)這個(gè)快速邏輯計(jì)算工具,縮短解決問題的時(shí)間,增強(qiáng)預(yù)測的精確性。這“三化”是互相聯(lián)系的,它們的結(jié)合使決策的技術(shù)和方法發(fā)生了重大變化。
2、另一個(gè)層次:待定系數(shù)法,換元法,數(shù)學(xué)歸納法。
所謂方法,是指人們?yōu)榱诉_(dá)到某種目的而采取的手段、途徑和行為方式中所包含的可操作的規(guī)則或模式.人們通過長期的實(shí)踐,發(fā)現(xiàn)了許多運(yùn)用數(shù)學(xué)思想的手段、門路或程序.同一手段、門路或程序被重復(fù)運(yùn)用了多次,并且都達(dá)到了預(yù)期的目的,就成為數(shù)學(xué)方法.數(shù)學(xué)方法是以數(shù)學(xué)為工具進(jìn)行科學(xué)研究的方法,即用數(shù)學(xué)語言表達(dá)事物的狀態(tài)、關(guān)系和過程,經(jīng)過推導(dǎo)、運(yùn)算與分析,以形成解釋、判斷和預(yù)言的方法. 數(shù)學(xué)方法具有以下三個(gè)基本特征:一是高度的抽象性和概括性;二是精確性,即邏輯的嚴(yán)密性及結(jié)論的確定性;三是應(yīng)用的普遍性和可操作性. 數(shù)學(xué)方法在科學(xué)技術(shù)研究中具有舉足輕重的地位和作用:一是提供簡潔精確的形式化語言,二是提供數(shù)量分析及計(jì)算的方法,三是提供邏輯推理的工具.現(xiàn)代科學(xué)技術(shù)特別是電子計(jì)算機(jī)的發(fā)展,與數(shù)學(xué)方法的地位和作用的強(qiáng)化正好是相輔相成. 在中學(xué)數(shù)學(xué)中經(jīng)常用到的基本數(shù)學(xué)方法,大致可以分為以下三類: (1)邏輯學(xué)中的方法.例如分析法(包括逆證法)、綜合法、反證法、歸納法、窮舉法(要求分類討論)等.這些方法既要遵從邏輯學(xué)中的基本規(guī)律和法則,又因?yàn)檫\(yùn)用于數(shù)學(xué)之中而具有數(shù)學(xué)的特色. (2)數(shù)學(xué)中的一般方法.例如建模法、消元法、降次法、代入法、圖象法(也稱坐標(biāo)法,在代數(shù)中常稱圖象法,在我們今后要學(xué)習(xí)的解析幾何中常稱坐標(biāo)法)、比較法(數(shù)學(xué)中主要是指比較大小,這與邏輯學(xué)中的多方位比較不同)、放縮法,以及將來要學(xué)習(xí)的向量法、數(shù)學(xué)歸納法(這與邏輯學(xué)中的不完全歸納法不同)等.這些方法極為重要,應(yīng)用也很廣泛. (3)數(shù)學(xué)中的特殊方法.例如配方法、待定系數(shù)法、加減(消元)法、公式法、換元法(也稱之為中間變量法)、拆項(xiàng)補(bǔ)項(xiàng)法(含有添加輔助元素實(shí)現(xiàn)化歸的數(shù)學(xué)思想)、因式分解諸方法,以及平行移動(dòng)法、翻折法等.這些方法在解決某些數(shù)學(xué)問題時(shí)也起著重要作用,我們不可等閑視之.。
1、對應(yīng)思想方法
對應(yīng)是人們對兩個(gè)集合因素之間的聯(lián)系的一種思想方法,小學(xué)數(shù)學(xué)一般是一一對應(yīng)的直觀圖表,并以此孕伏函數(shù)思想。如直線上的點(diǎn)(數(shù)軸)與表示具體的數(shù)是一一對應(yīng)。
2、假設(shè)思想方法
假設(shè)是先對題目中的已知條件或問題作出某種假設(shè),然后按照題中的已知條件進(jìn)行推算,根據(jù)數(shù)量出現(xiàn)的矛盾,加以適當(dāng)調(diào)整,最后找到正確答案的一種思想方法。假設(shè)思想是一種有意義的想象思維,掌握之后可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數(shù)學(xué)中常見的思想方法之一,也是促進(jìn)學(xué)生思維發(fā)展的手段。在教學(xué)分?jǐn)?shù)應(yīng)用題中,教師善于引導(dǎo)學(xué)生比較題中已知和未知數(shù)量變化前后的情況,可以幫助學(xué)生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數(shù)字、圖形和各種特定的符號)來描述數(shù)學(xué)內(nèi)容,這就是符號思想。如數(shù)學(xué)中各種數(shù)量關(guān)系,量的變化及量與量之間進(jìn)行推導(dǎo)和演算,都是用小小的字母表示數(shù),以符號的濃縮形式表達(dá)大量的信息。如定律、公式、等。
5、類比思想方法
類比思想是指依據(jù)兩類數(shù)學(xué)對象的相似性,有可能將已知的一類數(shù)學(xué)對象的性質(zhì)遷移到另一類數(shù)學(xué)對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數(shù)學(xué)知識容易理解,而且使公式的記憶變得順?biāo)浦郯阕匀缓秃啙崱?/p>
6、轉(zhuǎn)化思想方法
轉(zhuǎn)化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計(jì)算中也常用到甲÷乙=甲*1/乙。
1)講授法 講授法是教師通過口頭語言向?qū)W生傳授知識的方法。
講授法包括講述法、講解法、講讀法和講演法。教師運(yùn)用各種教學(xué)方法進(jìn)行教學(xué)時(shí),大多都伴之以講授法。
這是當(dāng)前我國最經(jīng)常使用的一種教學(xué)方法。 2)談?wù)摲?談?wù)摲ㄒ嘟袉柎鸱ā?/p>
它是教師按一定的教學(xué)要求向?qū)W生提出問題,要求學(xué)生回答,并通過問答的形式來引導(dǎo)學(xué)生獲取或鞏固知識的方法。談?wù)摲ㄌ貏e有助于激發(fā)學(xué)生的思維,調(diào)動(dòng)學(xué)習(xí)的積極性,培養(yǎng)他們獨(dú)立思考和語言表述的能力。
初中,尤其是小學(xué)低年級常用談?wù)摲ā?談?wù)摲煞謴?fù)習(xí)談話和啟發(fā)談話兩種。
復(fù)習(xí)談話是根據(jù)學(xué)生已學(xué)教材向?qū)W生提出一系列問題,通過師生問答形式以幫助學(xué)生復(fù)習(xí)、深化、系統(tǒng)化已學(xué)的知識。啟發(fā)談話則是通過向?qū)W生提出來思考過的問題,一步一步引導(dǎo)他們?nèi)ド钊胨伎己吞饺⌒轮R。
3)演示法 演示教學(xué)是教師在教學(xué)時(shí),把實(shí)物或直觀教具展示給學(xué)生看,或者作示范性的實(shí)驗(yàn),通過實(shí)際觀察獲得感性知識以說明和印證所傳授知識的方法。 演示教學(xué)能使學(xué)生獲得生動(dòng)而直觀的感性知識,加深對學(xué)習(xí)對象的印象,把書本上理論知識和實(shí)際事物聯(lián)系起來,形成正確而深刻的概念;能提供一些形象的感性材料,引起學(xué)習(xí)的興趣,集中學(xué)生的注意力,有助于對所學(xué)知識的深入理解、記憶和鞏固;能使學(xué)生通過觀察和思考,進(jìn)行思維活動(dòng),發(fā)展觀察力、想象力和思維能力。
4)練習(xí)法 練習(xí)法是學(xué)生在教師的指導(dǎo)下,依靠自覺的控制和校正,反復(fù)地完成一定動(dòng)作或活動(dòng)方式,借以形成技能、技巧或行為習(xí)慣的教學(xué)方法。從生理機(jī)制上說,通過練習(xí)使學(xué)生在神經(jīng)系統(tǒng)中形成一定的動(dòng)力定型,以便順利地、成功地完成某種活動(dòng)。
練習(xí)在各科教學(xué)中得到廣泛的應(yīng)用,尤其是工具性學(xué)科(如語文、外語、數(shù)學(xué)等)和技能性學(xué)科(如體育、音樂、美術(shù)等)。練習(xí)法對于鞏固知識,引導(dǎo)學(xué)生把知識應(yīng)用于實(shí)際,發(fā)展學(xué)生的能力以及形成學(xué)生的道德品質(zhì)等方面具有重要的作用。
5)讀書指導(dǎo)法 讀書指導(dǎo)法是教師指導(dǎo)學(xué)生通過閱讀教科書、參考書以獲取知識或鞏固知識的方法。學(xué)生掌握書本知識,固然有賴于教師的講授,但還必須靠他們自己去閱讀、領(lǐng)會(huì),才能消化、鞏固和擴(kuò)大知識。
特別是只有通過學(xué)生獨(dú)立閱讀才能掌握讀書方法,提高自學(xué)能力,養(yǎng)成良好的讀書習(xí)慣。 6)課堂討論法 課堂討論法是在教師的指導(dǎo)下,針對教材中的基礎(chǔ)理論或主要疑難問題,在學(xué)生獨(dú)立思考之后,共同進(jìn)行討論、辯論的教學(xué)組織形式及教學(xué)方法,可以全班進(jìn)行,也可分大組進(jìn)行。
7)實(shí)驗(yàn)法 實(shí)驗(yàn)法是學(xué)生在教師的指導(dǎo)下,使用一定的設(shè)備和材料,通過控制條件的操作過程,引起實(shí)驗(yàn)對象的某些變化,從觀察這些現(xiàn)象的變化中獲取新知識或驗(yàn)證知識的教學(xué)方法。在物理、化學(xué)、生物、地理和自然常識等學(xué)科的教學(xué)中,實(shí)驗(yàn)是一種重要的方法。
一般實(shí)驗(yàn)是在實(shí)驗(yàn)室、生物或農(nóng)業(yè)實(shí)驗(yàn)園地進(jìn)行的。有的實(shí)驗(yàn)也可以在教室里進(jìn)行。
實(shí)驗(yàn)法是隨著近代自然科學(xué)的發(fā)展興起的?,F(xiàn)代科學(xué)技術(shù)和實(shí)驗(yàn)手段的飛躍發(fā)展,使實(shí)驗(yàn)法發(fā)揮越來越大的作用。
通過實(shí)驗(yàn)法,可以使學(xué)生把一定的直接知識同書本知識聯(lián)系起來,以獲得比較完全的知識,又能夠培養(yǎng)他們的獨(dú)立探索能力、實(shí)驗(yàn)操作能力和科學(xué)研究興趣。它是提高自然科學(xué)有關(guān)學(xué)科教學(xué)質(zhì)量不可缺少的條件。
聲明:本網(wǎng)站尊重并保護(hù)知識產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請?jiān)谝粋€(gè)月內(nèi)通知我們,我們會(huì)及時(shí)刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁面生成時(shí)間:2.552秒