1、《數學幫幫忙》(全25冊),(美)羅莎 · 桑托斯,新蕾出版社 2、《天哪!數學原來可以這樣學》,(日)野口哲典,陜西師范大學出版社 3、《奇妙的數王國》,李毓佩,中國少年兒童出版社 4、《李毓佩數學童話集》(小學低年級),李毓佩,海豚出版社 5、《馬小跳玩數學》(低年級),楊紅纓,吉林美術出版社 6、《奇妙的數學》(一、二年級),博爾,重慶出版社 7、《我超喜歡的趣味數學書》(1、2年級),邢書田、馬慧,電子工業(yè)出版社 8、《數學真美妙》(1-2年級),劉勇,電子工業(yè)出版社 學習數學的好處: 1.數學能讓你思考任何問題的時候都比較縝密,而不至于思緒紊亂。
還能使你的腦子反映靈活,對突發(fā)事件的處理手段也更理性。 2.數學給予人們的不僅是知識,更重要的是能力,這種能力包括觀察實驗、收集信息、歸納類比、直覺判斷、邏輯推理、建立模型和精確計算。
這些能力和培養(yǎng),將使人終身受益。 3.經驗是數學的基礎,問題是數學的心臟,思考是數學的核心,發(fā)展是數學的目標,思想方法是數學的靈魂……數學思想方法是數學知識的精髓,是分析、解決數學問題的基本原則,也是數學素養(yǎng)的重要內涵,它是培養(yǎng)學生良好思維品質的催化劑。
4.數學與我們的生活有著密切的聯系,讓學生認識到現實生活中蘊涵著大量的數學信息,數學在現實生活中有著廣泛的應用,并從中體會到數學的價值,增進對數學的理解和應用數學的信心等。 5.或許讓學生體會到數學源于生活、用于生活的同時,更應該讓學生體會到數學高于生活,體會到數學可以帶動社會的發(fā)展,帶動生活質量的提高,這樣更能激發(fā)學生學好數學。
6.數學應用之廣泛,小至日常生活中柴米油鹽醬醋茶的買賣、利率、保險、醫(yī)療費用的計算,大至天文地理、環(huán)境生態(tài)、信息網絡、質量控制、管理與預測、大型工程、農業(yè)經濟、國防科學、航天事業(yè)均大量存在著運用數學的蹤影。 例如你可以用黃金分割的知識來審視一樣事物,看它美不美,又美在哪里,是否符合黃金分割。
又可以運用簡單的數學知識來分析你家一年的收入與支出,每年各增長多少,只要你想得出,生活中處處有數學。
第一單元 數與代數 (一)數的認識 整數【正數、0、負數】1、一個物體也沒有,用0表示。
0和1、2、3……都是自然數。自然數是整數。
2、最小的一位數是1,最小的自然數是0。3、零上4攝氏度記作+4℃;零下4攝氏度記作-4℃。
“+4”讀作正四?!?4”讀作負四。
+4也可以寫成4。4、像+4、19、+8844這樣的數都是正數。
像-4、-11、-7、-155這樣的數都是負數。5、0既不是正數,也不是負數。
正數都大于0,負數都小于0。6、通常情況下,比海平面高用正數表示,比海平面低用負數表示。
通常情況下,盈利用正數表示,虧損用負數表示。通常情況下,上車人數用正數表示,下車人數用負數表示。
通常情況下,收入用正數表示,支出用負數表示。通常情況下,上升用正數表示,下降用負數表示。
小數【有限小數、無限小數】1、分母是10、100、1000……的分數都可以用小數表示。一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……2、整數和小數都是按照十進制計數法寫出的數,個、十、百……以及十分之一、百分之一……都是計數單位。
每相鄰兩個計數單位間的進率都是10。3、每個計數單位所占的位置,叫做數位。
數位是按照一定的順序排列的。4、小數點位置移動引起小數大小變化的規(guī)律 一個小數乘10、100、1000……只要把這個小數的小數點向右移動一位、兩位、三位…… 一個小數除以10、100、1000……只要把這個小數的小數點向左移動一位、兩位、三位……5、小數的性質:小數的末尾添上“0”或去掉“0”,小數的大小不變。
根據小數的性質,通??梢匀サ粜的┪驳摹?”,把小數化簡。6、比較小數大小的一般方法:先比較整數部分的數,再依次比較小數部分十分位上的數,百分位上的數,千分位上的數,從左往右,如果哪個數位上的數大,這個小數就大。
7、把一個數改寫成用“萬”或“億”作單位的數,只要在萬位或億位右邊點上小數點,再在數的后面添寫“萬”字或“億”字。8、求小數近似數的一般方法:(1)先要弄清保留幾位小數;(2)根據需要確定看哪一位上的數;(3)用“四舍五入”的方法求得結果。
9、整數和小數的數位順序表: 整 數 部 分 小數點 小 數 部 分 … 億 級 萬 級 個 級 數位 … 千億位 百億位 十億位 億 位 千萬位 百萬位 十萬位 萬 位 千 位 百 位 十 位 個 位 ? 十分位 百分位 千分位 萬分位 … 計數單位 … 千億 百億 十億 億 千萬 百萬 十萬 萬 千 百 十 個(一) 十分之一 百分之一 千分之一 萬分之一 … 分數【真分數、假分數】1、把單位“1”平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數,是這個分數的分數單位。
2、兩個數相除,它們的商可以用分數表示。即:a÷b= (b≠0)3、從小數和分數的意義可以看出,小數實際上就是分母是10、100、1000……的分數。
4、分數可以分為真分數和假分數。5、分子小于分母的分數叫做真分數。
真分數小于1。6、分子大于或等于分母的分數叫做假分數。
假分數大于或等于1。7、分子和分母只有公因數1的分數叫做最簡分數。
8、分數的基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。9、小數的性質和分數的基本性質是一致的,應用分數的基本性質,可以通分和約分。
百分數【稅率、利息、折扣、成數】1、表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫百分率或 百分比,百分數通常用“%”表示。
2、分數與百分數比較: 不同點 相同點 分 數 可以表示具體數量,可以有單位名稱 表示兩個數之間的關系 百分數 不可以表示具體數量,不可以有單位名稱 3、分數、小數、百分數的互化。(1)把分數化成小數,用分數的分子除以分母。
(2)把小數化成分數,先改寫成分母是10、100、1000……的分數,再約分。(3)把小數化成百分數,先把小數點向右移動兩位,然后添上百分號。
(4)把百分數化成小數,先去掉百分號,然后把小數點向左移動兩位。(5)把分數化成百分數,先把分數化成小數(除不盡時通常保留三位小數),再把小數化成百分數。
(6)把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。4、熟記常用三數的互化。
=0.5=50% ≈0.333=33.3% ≈0.667=66.7% =0.25=25% =0.75=75% =0.2=20% =0.4=40% =0.6=60% =0.8=80% ≈0.167=16.7% ≈0.833=83.3% =0.125=12.5% =0.375=37.5% =0.625=62.5% =0.875=87.5% =0.1=10% =0.3=30% =0.7=70% =0.9=90% =0.05=5% =0.15=15% =0.35=35% =0.45=45% =0.55=55% =0.65=65% =0.85=85% =0.95=95% =0.04=4% =0.025=2.5% =0.02=2% =0.01=1%5、出勤率表示出勤人數占總人數的百分之幾。 合格率表示合格件數占總件數的百分之幾。
成活率表示成活棵數占總棵數的百分之幾。6、求一個數比另一個數多百分之幾,就是求一個數比另一個數多的占另一個數的百分之幾。
7、多的÷“1”=多百分之幾 少的÷“1”=少百分之幾 8、應得利息是稅前利息,實得利息是稅后利息。9、利息=本金*利率*時間10、應得利息-利息稅=實得利息11、幾折表示十分之幾,表示百分之幾十;幾幾折表示十分之幾點幾,表示百分之幾十幾。
12。
自然數
用來表示物體個數的0、1、2、3、4、5、6、7、8、9、10……叫做自然數。
整數
自然數都是整數,整數不都是自然數。
小數
小數是特殊形式的分數。但是不能說小數就是分數。
混小數(帶小數)
小數的整數部分不為零的小數叫混小數,也叫帶小數。
純小數
小數的整數部分為零的小數,叫做純小數。
循環(huán)小數
小數部分一個數字或幾個數字依次不斷地重復出現,這樣的小數叫做循環(huán)小數。例如:0.333……,1.2470470470……都是循環(huán)小數。
純循環(huán)小數
循環(huán)節(jié)從十分位就開始的循環(huán)小數,叫做純循環(huán)小數。例如: , 。混循環(huán)小數
與純循環(huán)小數有唯一的區(qū)別:不是從十分位開始循環(huán)的循環(huán)小數,叫混循環(huán)小數。例如, , 。
有限小數
小數的小數部分只有有限個數字的小數(不全為零)叫做有限小數。
無限小數
小數的小數部分有無數個數字(不包含全為零)的小數,叫做無限小數。循環(huán)小數都是無限小數,無限小數不一定都是循環(huán)小數。例如,圓周率π也是無限小數。
分數
表示把一個“單位1”平均分成若干份,取其中的一份或幾份的數,叫做分數。(分成0份在此不討論)
真分數
分子比分母小的分數叫真分數。
假分數
分子比分母大,或者分子等于分母的分數叫做假分數。(分母、分子為零在此不討論)
帶分數
一個整數(零除外)和一個真分數組合在一起的數,叫做帶分數。帶分數也是假分數的另一種表示形式,相互之間可以互化。
關于 (n表示自然數)是否是分數
是分數,但不能用分數的意義去解釋它,它既不屬于真分數,也不屬于假分數,而是一個特殊分數,叫零分數。
數與數字的區(qū)別
數字(也就是數碼):是用來記數的符號,通常用國際通用的阿拉伯數字 0~9這十個數字。其他還有中國小寫數字,大寫數字,羅馬數字等等。
數是由數字和數位組成。
0的意義
0既可以表示“沒有”,也可以作為某些數量的界限。如溫度等。0是一個完全有確定意義的數。
0是一個數。
0是一個偶數。
0是任何自然數(0除外)的倍數。
0有占位的作用。
0不能作除數。
0是中性數。
十進制
十進制計數法是世界各國常用的一種記數方法。特點是相鄰兩個單位之間的進率都是十。10個較低的單位等于1個相鄰的較高單位。常說“滿十進一”,這種以“十”為基數的進位制,叫做十進制。
加法
把兩個數合并成一個數的運算,叫做加法,其中兩個數都叫“加數”,結果叫“和”。
減法
已知兩個加數的和與其中一個加數,求另一個加數的運算,叫做減法。減法是加法的逆運算。其中“和”叫“被減數”,已知的加數叫“減數”,求出的另一個加數叫“差”。
乘法
求n個相同加數的和的簡便運算,叫做乘法。其中相同的這個數及n個這樣的數都叫“因數”,結果叫“積”。
除法
已知兩個因數的積與其中一個因數,求另一個因數的運算,叫做除法。除法是乘法的逆運算。其中“積”叫做“被除數”,已知的一個因數叫做“除數”,求出來的另一個因數叫做“商”。
加、減法的運算定律
加法交換律:兩個數相加,交換兩個加數的位置,和不變,叫做加法交換律。
加法結合律:三個數相加,先把前二個數相加,再加第三個數,或者,先把后二個數相加,再加上第一個數,其和不變。這叫做加法結合律。
在減法中,被減數、減數同時加上或者減去一個數,差不變。
在減法中,被減數增加多少或者減少多少,減數不變,差隨著增加或者減少多少。反之,減數增加多少或者減少多少,被減數不變,差隨著減少或者增加多少。
在減法中,被減數減去若干個減數,可以把這些減數先加,差不變。
乘、除法運算定律
乘法的交換律:兩個數相乘,交換兩個因數的位置,積不變。這叫做乘法的交換律。
乘法的結合律:三個數相乘,先把前兩個數相乘,再乘以第三個數,或者,先把后兩個數相乘,再和第一個數相乘,積不變。這叫做乘法結合律。
小學一年級 九九乘法口訣表。
學會基礎加減乘。 小學二年級 完善乘法口訣表,學會除混合運算,基礎幾何圖形。
小學三年級 學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。
小學四年級 線角自然數整數,素因數梯形對稱,分數小數計算。 小學五年級 分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。
小學六年級 比例百分比概率,圓扇圓柱及圓錐。 必背定義、定理公式 三角形的面積=底*高÷2。
公式 S= a*h÷2 正方形的面積=邊長*邊長 公式 S= a*a 長方形的面積=長*寬 公式 S= a*b 平行四邊形的面積=底*高 公式 S= a*h 梯形的面積=(上底+下底)*高÷2 公式 S=(a+b)h÷2 內角和:三角形的內角和=180度。 長方體的體積=長*寬*高 公式:V=abh 長方體(或正方體)的體積=底面積*高 公式:V=abh 正方體的體積=棱長*棱長*棱長 公式:V=aaa 圓的周長=直徑*π 公式:L=πd=2πr 圓的面積=半徑*半徑*π 公式:S=πr2 圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。
公式:S=ch=πdh=2πrh 圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2 圓柱的體積:圓柱的體積等于底面積乘高。
公式:V=Sh 圓錐的體積=1/3底面*積高。公式:V=1/3Sh 分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。
異分母的分數相加減,先通分,然后再加減。 分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等于乘以這個數的倒數。 讀懂理解會應用以下定義定理性質公式 一、算術方面 1、加法交換律:兩數相加交換加數的位置,和不變。
2、加法結合律:三個數相加,先把前兩個數相加,或先把后兩個數相加,再同第三個數相加,和不變。 3、乘法交換律:兩數相乘,交換因數的位置,積不變。
4、乘法結合律:三個數相乘,先把前兩個數相乘,或先把后兩個數相乘,再和第三個數相乘,它們的積不變。 5、乘法分配律:兩個數的和同一個數相乘,可以把兩個加數分別同這個數相乘,再把兩個積相加,結果不變。
如:(2+4)*5=2*5+4*5 6、除法的性質:在除法里,被除數和除數同時擴大(或縮小)相同的倍數,商不變。 O除以任何不是O的數都得O。
簡便乘法:被乘數、乘數末尾有O的乘法,可以先把O前面的相乘,零不參加運算,有幾個零都落下,添在積的末尾。 7、么叫等式?等號左邊的數值與等號右邊的數值相等的式子叫做等式。
等式的基本性質:等式兩邊同時乘以(或除以)一個相同的數,等式仍然成立。 8、什么叫方程式?答:含有未知數的等式叫方程式。
9、什么叫一元一次方程式?答:含有一個未知數,并且未知數的次 數是一次的等式叫做一元一次方程式。 學會一元一次方程式的例法及計算。
即例出代有χ的算式并計算。 10、分數:把單位"1"平均分成若干份,表示這樣的一份或幾分的數,叫做分數。
11、分數的加減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
12、分數大小的比較:同分母的分數相比較,分子大的大,分子小的小。異分母的分數相比較,先通分然后再比較;若分子相同,分母大的反而小。
13、分數乘整數,用分數的分子和整數相乘的積作分子,分母不變。 14、分數乘分數,用分子相乘的積作分子,分母相乘的積作為分母。
15、分數除以整數(0除外),等于分數乘以這個整數的倒數。 16、真分數:分子比分母小的分數叫做真分數。
17、假分數:分子比分母大或者分子和分母相等的分數叫做假分數。假分數大于或等于1。
18、帶分數:把假分數寫成整數和真分數的形式,叫做帶分數。 19、分數的基本性質:分數的分子和分母同時乘以或除以同一個數(0除外),分數的大小不變。
20、一個數除以分數,等于這個數乘以分數的倒數。 21、甲數除以乙數(0除外),等于甲數乘以乙數的倒數。
數量關系計算公式方面(南京家教網整理) 1、單價*數量=總價 2、單產量*數量=總產量 3、速度*時間=路程 4、工效*時間=工作總量 5、加數+加數=和 一個加數=和+另一個加數 被減數-減數=差 減數=被減數-差 被減數=減數+差 因數*因數=積 一個因數=積÷另一個因數 被除數÷除數=商 除數=被除數÷商 被除數=商*除數。
小學數學復習考試知識點匯總一、小學生數學法則知識歸類(一)筆算兩位數加法,要記三條1、相同數位對齊;2、從個位加起;3、個位滿10向十位進1。
(二)筆算兩位數減法,要記三條1、相同數位對齊;2、從個位減起;3、個位不夠減從十位退1,在個位加10再減。(三)混合運算計算法則1、在沒有括號的算式里,只有加減法或只有乘除法的,都要從左往右按順序運算;2、在沒有括號的算式里,有乘除法和加減法的,要先算乘除再算加減;3、算式里有括號的要先算括號里面的。
(四)四位數的讀法1、從高位起按順序讀,千位上是幾讀幾千,百位上是幾讀幾百,依次類推;2、中間有一個0或兩個0只讀一個“零”;3、末位不管有幾個0都不讀。(五)四位數寫法1、從高位起,按照順序寫;2、幾千就在千位上寫幾,幾百就在百位上寫幾,依次類推,中間或末尾哪一位上一個也沒有,就在哪一位上寫“0”。
(六)四位數減法也要注意三條1、相同數位對齊;2、從個位減起;3、哪一位數不夠減,從前位退1,在本位加10再減。(七)一位數乘多位數乘法法則1、從個位起,用一位數依次乘多位數中的每一位數;2、哪一位上乘得的積滿幾十就向前進幾。
(八)除數是一位數的除法法則1、從被除數高位除起,每次用除數先試除被除數的前一位數,如果它比除數小再試除前兩位數;2、除數除到哪一位,就把商寫在那一位上面;3、每求出一位商,余下的數必須比除數小。(九)一個因數是兩位數的乘法法則1、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;2、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;3、然后把兩次乘得的數加起來。
(十)除數是兩位數的除法法則1、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,2、除到被除數的哪一位就在哪一位上面寫商;3、每求出一位商,余下的數必須比除數小。(十一)萬級數的讀法法則1、先讀萬級,再讀個級;2、萬級的數要按個級的讀法來讀,再在后面加上一個“萬”字;3、每級末位不管有幾個0都不讀,其它數位有一個0或連續(xù)幾個零都只讀一個“零”。
(十二)多位數的讀法法則1、從高位起,一級一級往下讀;2、讀億級或萬級時,要按照個級數的讀法來讀,再往后面加上“億”或“萬”字;3、每級末尾的0都不讀,其它數位有一個0或連續(xù)幾個0都只讀一個零。(十三)小數大小的比較比較兩個小數的大小,先看它們整數部分,整數部分大的那個數就大,整數部分相同的,十分位上的數大的那個數就大,十分位數也相同的,百分位上的數大的那個數就大,依次類推。
(十四)小數加減法計算法則計算小數加減法,先把小數點對齊(也就是把相同的數位上的數對齊),再按照整數加減法則進行計算,最后在得數里對齊橫線上的小數點位置,點上小數點。(十五)小數乘法的計算法則計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
(十六)除數是整數除法的法則除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有余數,就在余數后面添0再繼續(xù)除。(十七)除數是小數的除法運算法則除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然后按照除數是整數的小數除法進行計算。
(十八)解答應用題步驟1、弄清題意,并找出已知條件和所求問題,分析題里的數量關系,確定先算什么,再算什么,最后算什么; 2、確定每一步該怎樣算,列出算式,算出得數;3、進行檢驗,寫出答案。(十九)列方程解應用題的一般步驟1、弄清題意,找出未知數,并用X表示;2、找出應用題中數量之間的相等關系,列方程;3、解方程;4、檢驗、寫出答案。
(二十)同分母分數加減的法則同分母分數相加減,分母不變,只把分子相加減。(二十一)同分母帶分數加減的法則帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合并起來。
(二十二)異分母分數加減的法則異分母分數相加減,先通分,然后按照同分母分數加減的法則進行計算。(二十三)分數乘以整數的計算法則分數乘以整數,用分數的分子和整數相乘的積作分子,分母不變。
(二十四)分數乘以分數的計算法則分數乘以分數,用分子相乘的積作分子,分母相乘的積作分母。(二十五)一個數除以分數的計算法則一個數除以分數,等于這個數乘以除數的倒數。
(二十六)把小數化成百分數和把百分數化成小數的方法把小數化成百分數,只要把小數點向右移動兩位,同時在后面添上百分號;把百分數化成小數,把百分號去掉,同時小數點向左移動兩位。(二十七)把分數化成百分數和把百分數化成分數的方法把分數化成百分數,通常先把分數化成小數(除不盡通常保留三位小數),再把小數化成百分數;把百分數化成小數,先把百分數改寫成分母是100的分數,能約分的要約成最簡分數。
二、小學數學口決定義歸類1、什么是圖形的周長?圍成一個圖形所。
1、數與代數:數的認識、數的運算、式與方程、比和比例。
2、空間與圖形:線與角、平面圖形、立體圖形、圖形與變換、圖形與位置。3、統(tǒng)計與可能性:量的計量、統(tǒng)計、可能性。
4、實踐與綜合應用:探索規(guī)律、一般復合應用問題、典型應用問題、分數和百分數應用問題、比和比例問題、解決問題的策略、綜合應用問題。擴展資料:整數1、整數的意義:…像-4,-3,-2,-1,0,1,2,3,…這樣的數叫整數。
2、自然數:我們在數物體的時候,用來表示物體個數的1,2,3,4……叫做自然數。一個物體也沒有,用0表示,0也是自然數。
3、計數單位 一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數單位。每相鄰兩個計數單位之間的進率都是10。
這樣的計數法叫做十進制計數法。4、數位 計數單位按照一定的順序排列起來,它們所占的位置叫做數位。
5、數的整除:整數a除以整數b(b≠0),除得的商是整數而沒有余數,我們就說a能被b整除,或者說b能整除a。如果數a能被數b(b≠0)整除,a就叫做b的倍數,b就叫做a的約數(或a的因數)。
倍數和約數是相互依存的。因為35能被7整除,所以35是7的倍數,7是35的約數。
7、什么叫比:兩個數相除就叫做兩個數的比。如:2÷5或3:6或1/3 比的前項和后項同時乘以或除以一個相同的數(0除外),比值不變。
8、什么叫比例:表示兩個比相等的式子叫做比例。如3:6=9:189、比例的基本性質:在比例里,兩外項之積等于兩內項之積。
10、解比例:求比例中的未知項,叫做解比例。如3:χ=9:18 解比例的依據是比例的基本性質。
11、正比例:兩種相關聯的量,一種量變化,另一種量也隨著化,如果這兩種量中相對應的的比值(也就是商k)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。如:y/x=k(k一定)或kx=y12、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。
如:x*y=k(k一定)或k/x=y 百分數:表示一個數是另一個數的百分之幾的數,叫做百分數。百分數也叫做百分率或百分比。
13、把小數化成百分數,只要把小數點向右移動兩位,同時在后面添上百分號。其實,把小數化成百分數,只要把這個小數乘以100%就行了。
把百分數化成小數,只要把百分號去掉,同時把小數點向左移動兩位。14、把分數化成百分數,通常先把分數化成小數(除不盡時,通常保留三位小數),再把小數化成百分數。
其實,把分數化成百分數,要先把分數化成小數后,再乘以100%就行了。把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。
15、要學會把小數化成分數和把分數化成小數的化法。16、最大公因數:幾個數都能被同一個數一次性整除,這個數就叫做這幾個數的最大公約數。
(或幾個數公有的約數,叫做這幾個數的公約數。其中最大的一個,叫做最大公約數。)
17、互質數:公因數只有1的兩個數,叫做互質數。18、最小公倍數:幾個數公有的倍數,叫做這幾個數的公倍數,其中最小的一個叫做這幾個數的最小公倍數。
19、通分:把異分母分數的分別化成和原來分數相等的同分母的分數,叫做通分。(通分用最小公倍數)20、約分:把一個分數化成同它相等,但分子、分母都比較小的分數,叫做約分。
(約分用最大公因數)21、最簡分數:分子、分母是互質數的分數,叫做最簡分數。分數計算到最后,得數必須化成最簡分數。
個位上是0、2、4、6、8的數,都能被2整,即能用2進行 約分。個位上是0或者5的數,都能被5整除,即能用5進行約分。
在約分時應注意利用。22、偶數和奇數:能被2整除的數叫做偶數。
不能被2整除的數叫做奇數。23、質數(素數):一個數,如果只有1和它本身兩個約數,這樣的數叫做質數(或素數)。
24、合數:一個數,如果除了1和它本身還有別的約數,這樣的數叫做合數。1不是質數,也不是合數。
28、利息=本金*利率*時間(時間一般以年或月為單位,應與利率的單位相對應)29、利率:利息與本金的比值叫做利率。一年的利息與本金的比值叫做年利率。
一月的利息與本金的比值叫做月利率。30、自然數:用來表示物體個數的整數,叫做自然數。
0也是自然數。31、循環(huán)小數:一個小數,從小數部分的某一位起,一個數字或幾個數字依次不斷的重復出現,這樣的小數叫做循環(huán)小數。
32、一天的時間:一天有24小時,一小時60分,1分60秒 參考資料來源:百度百科-小學數學知識 參考資料來源:百度百科-小學數學。
小學一年級 九九乘法口訣表。學會基礎加減乘。
小學二年級 完善乘法口訣表,學會除混合運算,基礎幾何圖形。
小學三年級 學會乘法交換律,幾何面積周長等,時間量及單位。路程計算,分配律,分數小數。
小學四年級 線角自然數整數,素因數梯形對稱,分數小數計算。
小學五年級 分數小數乘除法,代數方程及平均,比較大小變換,圖形面積體積。
小學六年級 比例百分比概率,圓扇圓柱及圓錐。
必背定義、定理公式
三角形的面積=底*高÷2。 公式 S= a*h÷2
正方形的面積=邊長*邊長 公式 S= a*a
長方形的面積=長*寬 公式 S= a*b
平行四邊形的面積=底*高 公式 S= a*h
梯形的面積=(上底+下底)*高÷2 公式 S=(a+b)h÷2
內角和:三角形的內角和=180度。
長方體的體積=長*寬*高 公式:V=abh
長方體(或正方體)的體積=底面積*高 公式:V=abh
正方體的體積=棱長*棱長*棱長 公式:V=aaa
圓的周長=直徑*π 公式:L=πd=2πr
圓的面積=半徑*半徑*π 公式:S=πr2
圓柱的表(側)面積:圓柱的表(側)面積等于底面的周長乘高。公式:S=ch=πdh=2πrh
圓柱的表面積:圓柱的表面積等于底面的周長乘高再加上兩頭的圓的面積。公式:S=ch+2s=ch+2πr2
圓柱的體積:圓柱的體積等于底面積乘高。公式:V=Sh
圓錐的體積=1/3底面*積高。公式:V=1/3Sh
分數的加、減法則:同分母的分數相加減,只把分子相加減,分母不變。異分母的分數相加減,先通分,然后再加減。
分數的乘法則:用分子的積做分子,用分母的積做分母。
分數的除法則:除以一個數等于乘以這個數的倒數。
對于那些成績較差的小學生來說,學習小學數學都有很大的難度,其實小學數學屬于基礎類的知識比較多,只要掌握一定的技巧還是比較容易掌握的.在小學,是一個需要養(yǎng)成良好習慣的時期,注重培養(yǎng)孩子的習慣和學習能力是重要的一方面,那小學數學有哪些技巧?
一、重視課內聽講,課后及時進行復習.
新知識的接受和數學能力的培養(yǎng)主要是在課堂上進行的,所以我們必須特別注意課堂學習的效率,尋找正確的學習方法.在課堂上,我們必須遵循教師的思想,積極制定以下步驟,思考和預測解決問題的思想與教師之間的差異.特別是,我們必須了解基本知識和基本學習技能,并及時審查它們以避免疑慮.首先,在進行各種練習之前,我們必須記住教師的知識點,正確理解各種公式的推理過程,并試著記住而不是采用"不確定的書籍閱讀".勤于思考,對于一些問題試著用大腦去思考,認真分析問題,嘗試自己解決問題.
二、多做習題,養(yǎng)成解決問題的好習慣.
如果你想學好數學,你需要提出更多問題,熟悉各種問題的解決問題的想法.首先,我們先從課本的題目為標準,反復練習基本知識,然后找一些課外活動,幫助開拓思路練習,提高自己的分析和掌握解決的規(guī)律.對于一些易于查找的問題,您可以準備一個用于收集的錯題本,編寫自己的想法來解決問題,在日常養(yǎng)成解決問題的好習慣.學會讓自己高度集中精力,使大腦興奮,快速思考,進入最佳狀態(tài)并在考試中自由使用.
三、調整心態(tài)并正確對待考試.
首先,主要的重點應放在基礎、基本技能、基本方法,因為大多數測試出于基本問題,較難的題目也是出自于基本.所以只有調整學習的心態(tài),盡量讓自己用一個清楚的頭腦去解決問題,就沒有太難的題目.考試前要多對習題進行演練,開闊思路,在保證真確的前提下提高做題的速度.對于簡單的基礎題目要拿出二十分的把握去做;難得題目要盡量去做對,使自己的水平能正常或者超常發(fā)揮.
由此可見小學數學的技巧就是多做練習題,掌握基本知識.另外就是心態(tài),不能見考試就膽怯,調整心態(tài)很重要.所以大家可以遵循這些技巧,來提高自己的能力,使自己進入到數學的海洋中去.
聲明:本網站尊重并保護知識產權,根據《信息網絡傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個月內通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學習鳥. 頁面生成時間:2.669秒