去百度文庫,查看完整內(nèi)容>
內(nèi)容來自用戶:扭擺的青春
第一章數(shù)與式
考點一、概念及分類1、實數(shù)按定義分類正整數(shù)
整數(shù)零
有理數(shù)負整數(shù)實數(shù)正分?jǐn)?shù)
分?jǐn)?shù)有限小數(shù)和無限循環(huán)小數(shù)
負分?jǐn)?shù)
正無理數(shù)
無理數(shù)無限不循環(huán)小數(shù)
負無理數(shù)
2、實數(shù)按正負分類
正整數(shù)
正有理數(shù)
正實數(shù)正分?jǐn)?shù)
正無理數(shù)
實數(shù)零負整數(shù)
負有理數(shù)
負分?jǐn)?shù)
負實數(shù)
負無理數(shù)
在理解無理數(shù)時,要抓住“無限不循環(huán)”這一本質(zhì),歸納起來有四類:
(1)開方開不盡的數(shù),如等;
(2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;
(3)有特定結(jié)構(gòu)的數(shù),如0.1010010001…等,一定要注意后面要帶省略號;
(4)某些三角函數(shù),如sin60o等
考點二、數(shù)軸、倒數(shù)、相反數(shù)、絕對值1、數(shù)軸定義:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。對應(yīng):實數(shù)和數(shù)軸上的點是一一對應(yīng)的關(guān)系。2、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。a的倒數(shù)為。3、相反數(shù):如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。相反數(shù)等于本身的數(shù)是0,任何數(shù)都有相反數(shù)。a的相反數(shù)為-a。
4、絕對值
一個數(shù)的絕對值就是表示這個數(shù)的點與原點的距離,|a|≥0。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a(4.考點三、因式分解(1((考點一、平面直角坐標(biāo)系點(3如果自變量的取值范圍是反過來,解一元二次方程(1一條線段可用它的端點的兩個大寫字母
初中數(shù)學(xué)知識點總結(jié) 一、基本知識 一、數(shù)與代數(shù)A、數(shù)與式:1、有理數(shù)有理數(shù):①整數(shù)→正整數(shù)/0/負整數(shù)②分?jǐn)?shù)→正分?jǐn)?shù)/負分?jǐn)?shù) 數(shù)軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
②任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。③如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。
在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。④數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。
正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。 絕對值:①在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。
②正數(shù)的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:加法:①同號相加,取相同的符號,把絕對值相加。②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
③一個數(shù)與0相加不變。 減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:①兩數(shù)相乘,同號得正,異號得負,絕對值相乘。②任何數(shù)與0相乘得0。
③乘積為1的兩個有理數(shù)互為倒數(shù)。 除法:①除以一個數(shù)等于乘以一個數(shù)的倒數(shù)。
②0不能作除數(shù)。 乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。 2、實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù) 平方根:①如果一個正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
②如果一個數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。③一個正數(shù)有2個平方根/0的平方根為0/負數(shù)沒有平方根。
④求一個數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。 立方根:①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
②正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。③求一個數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):①實數(shù)分有理數(shù)和無理數(shù)。②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
③每一個實數(shù)都可以在數(shù)軸上的一個點來表示。 3、代數(shù)式 代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。
③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。 4、整式與分式 整式:①數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
②一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。③一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。 冪的運算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一樣。
整式的乘法:①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。②單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。 公式兩條:平方差公式/完全平方公式 整式的除法:①單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。 分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。 分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。 分式的運算: 乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。 加減法:①同分母分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。 分式方程:①分母中含有未知數(shù)的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。 B、方程與不等式 1、方程與方程組 一元一次方程:①在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。 解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。 二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。 二元。
初中數(shù)學(xué)基礎(chǔ)知識大全:直角坐標(biāo)系與點的位置1. 直角坐標(biāo)系中,點A(3,0)在y軸上。
2. 直角坐標(biāo)系中,x軸上的任意點的橫坐標(biāo)為0。3. 直角坐標(biāo)系中,點A(1,1)在第一象限。
4. 直角坐標(biāo)系中,點A(-1,1)在第二象限。5. 直角坐標(biāo)系中,點A(-1,-1)在第三象限。
6. 直角坐標(biāo)系中,點A(1,-1)在第四象限。初中數(shù)學(xué)基礎(chǔ)知識大全:特殊三角函數(shù)值1.cos30°=√3/22.sin2 60°+ cos2 60°= 13.2sin30°+ tan45°= 24.tan45°= 15.cos60°+ sin30°= 1初中數(shù)學(xué)基礎(chǔ)知識大全:圓的基本性質(zhì)1.半圓或直徑所對的圓周角是直角。
2.任意一個三角形一定有一個外接圓.3.在同一平面內(nèi),到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓。4.在同圓或等圓中,相等的圓心角所對的弧相等。
5.同弧所對的圓周角等于圓心角的一半。6.同圓或等圓的半徑相等。
7.過三個點一定可以作一個圓。8.長度相等的兩條弧是等弧。
9.在同圓或等圓中,相等的圓心角所對的弧相等。10.經(jīng)過圓心平分弦的直徑垂直于弦。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請在一個月內(nèi)通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁面生成時間:3.134秒