本人曾參加過兩次數(shù)模大賽。并都獲得二等獎(jiǎng)以上。
首先,需要弄清楚建模的過程。建議找本數(shù)模歷年的論文看看,理清思路,步驟等。
其次,看點(diǎn)數(shù)學(xué)的知識(shí)。重點(diǎn)是優(yōu)化、統(tǒng)計(jì)。幾乎每年都會(huì)有題目是關(guān)于優(yōu)化的。
第三、看一下算法相關(guān)的。當(dāng)然與上面的第二條有所重復(fù)了。并用MATLAB maple等實(shí)現(xiàn)以下。
第四、學(xué)習(xí)一下編程的知識(shí),比如C++,MATLAB,lingo等。
第五、找到兩個(gè)跟你互補(bǔ)的人,組成團(tuán)隊(duì),有人側(cè)重編程,有人側(cè)重論文,有人側(cè)重?cái)?shù)學(xué)等等。
最后,祝你好運(yùn)。
大學(xué)生數(shù)學(xué)建模競(jìng)賽簡(jiǎn)介 1、數(shù)模競(jìng)賽的起源與歷史 數(shù)模競(jìng)賽是由美國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)在1985年發(fā)起的一項(xiàng)大學(xué)生競(jìng)賽活動(dòng),目的在于激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高學(xué)生建立數(shù)學(xué)模型和運(yùn)用計(jì)算機(jī)技術(shù)解決實(shí)際問題的綜合能力,鼓勵(lì)廣大學(xué)生踴躍參加課外科技活動(dòng),開拓知識(shí)面,培養(yǎng)創(chuàng)精神及合作意識(shí),推動(dòng)大學(xué)數(shù)學(xué)教學(xué)體系、教學(xué)內(nèi)容和方法的改革。
我國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽是由教育部高教司和中國(guó)工業(yè)與數(shù)學(xué)學(xué)會(huì)主辦、面向全國(guó)高等院校的、每年一屆的通訊競(jìng)賽。其宗旨是:創(chuàng)新意 識(shí)、團(tuán)隊(duì)精神、重在參與、公平競(jìng)爭(zhēng)。
1992載在中國(guó)創(chuàng)辦,自從創(chuàng)辦以來,得到了教育部高教司和中國(guó)工業(yè)與應(yīng)用數(shù)學(xué)協(xié)會(huì)的得力支持和關(guān)心,呈現(xiàn)出迅速的發(fā)展發(fā)展勢(shì)頭,就2003年來說,報(bào)名階段須然受到“非典”影響,但是全國(guó)30個(gè)省(市、自治區(qū))及香港的637所院校就有5406隊(duì)參賽,在職業(yè)技術(shù)學(xué)院增加更快,參賽高校由2002年的1067所上升到了2003年的1410所。可以說:數(shù)學(xué)建模已經(jīng)成為全國(guó)高校規(guī)模最大課外科技活動(dòng)。
2、什么是數(shù)學(xué)建模 數(shù)學(xué)建模(Mathematical Modelling)是一種數(shù)學(xué)的思考方法,是“對(duì)現(xiàn)實(shí)的現(xiàn)象通過心智活動(dòng)構(gòu)造出能抓住其重要且有用的特征的表示,常常是形象化的或符號(hào)的表示。”從科學(xué),工程,經(jīng)濟(jì),管理等角度看數(shù)學(xué)建模就是用數(shù)學(xué)的語言和方法,通過抽象,簡(jiǎn)化建立能近似刻畫并“解決”實(shí)際問題的一種強(qiáng)有力的數(shù)學(xué)工具。
顧名思義,modelling一詞在英文中有“塑造藝術(shù)”的意思,從而可以理解從不同的側(cè)面,角度去考察問題就會(huì)有不盡的數(shù)學(xué)模型,從而數(shù)學(xué)建模 的創(chuàng)造又帶有一定的藝術(shù)的特點(diǎn)。而數(shù)學(xué)建模最重要的特點(diǎn)是要接受實(shí)踐的檢驗(yàn),多次修改模型漸趨完善的過程。
3、競(jìng)賽的內(nèi)容 競(jìng)賽題目一般來源于工程技術(shù)和管理科學(xué)等方面經(jīng)過適當(dāng)簡(jiǎn)化加工的實(shí)際問題,不要求參賽者預(yù)先掌握深入的專門知識(shí),只需要學(xué)過普通高校的數(shù)學(xué)課程。題目有較大的靈活性供參賽者發(fā)揮其創(chuàng)造能力。
參賽者應(yīng)根據(jù)題目要求,完成一篇包括模型假設(shè)、建立和求解、計(jì)算方法的設(shè)計(jì)和計(jì)算機(jī)實(shí)現(xiàn)、結(jié)果的分析和檢驗(yàn)、模型的改進(jìn)等方面的論文(即答卷)。競(jìng)賽評(píng)獎(jiǎng)以假設(shè)的合理性、建模的創(chuàng)造性、結(jié)果的正確性和文字表述的清晰程度為主要標(biāo)準(zhǔn)。
4、競(jìng)賽的步驟 建模是一種十分復(fù)雜的創(chuàng)造性勞動(dòng),現(xiàn)實(shí)世界中的事物形形色色,五花八門,不可能用一些條條框 框規(guī)定出各種模型如何具體建立,這里只是大致歸納一下建模的一般步驟和原則: 1)模型準(zhǔn)備:首先要了解問題的實(shí)際背景,明確題目的要求,收集各種必要的信息. 2)模型假設(shè):為了利用數(shù)學(xué)方法,通常要對(duì)問題做必要的、合理的假設(shè),使問題的主要特征凸現(xiàn)出來,忽略問題的次要方面。 3)模型構(gòu)成:根據(jù)所做的假設(shè)以及事物之間的聯(lián)系,構(gòu)造各種量之間的關(guān)系把問題化 4)模型求解:利用已知的數(shù)學(xué)方法來求解上一步所得到的數(shù)學(xué)問題,此時(shí)往往還要作出進(jìn)一步的簡(jiǎn)化或假設(shè)。
為數(shù)學(xué)問題,注意要盡量采用簡(jiǎn)單的數(shù)學(xué)工具。 5)模型分析:對(duì)所得到的解答進(jìn)行分析,特別要注意當(dāng)數(shù)據(jù)變化時(shí)所得結(jié)果是否穩(wěn)定。
6)模型檢驗(yàn):分析所得結(jié)果的實(shí)際意義,與實(shí)際情況進(jìn)行比較,看是否符合實(shí)際,如果不夠理想,應(yīng)該修改、補(bǔ)充假設(shè),或重新建模,不斷完善。 7)模型應(yīng)用:所建立的模型必須在實(shí)際應(yīng)用中才能產(chǎn)生效益,在應(yīng)用中不斷改進(jìn)和完善。
5、模型的分類 按模型的應(yīng)用領(lǐng)域分類 生物數(shù)學(xué)模型 醫(yī)學(xué)數(shù)學(xué)模型 地質(zhì)數(shù)學(xué)模型 數(shù)量經(jīng)濟(jì)學(xué)模型 數(shù)學(xué)社會(huì)學(xué)模型 按是否考慮隨機(jī)因素分類 確定性模型 隨機(jī)性模型 按是否考慮模型的變化分類 靜態(tài)模型 動(dòng)態(tài)模型 按應(yīng)用離散方法或連續(xù)方法 離散模型 連續(xù)模型 按建立模型的數(shù)學(xué)方法分類 幾何模型 微分方程模型 圖論模型 規(guī)劃論模型 馬氏鏈模型 按人們對(duì)事物發(fā)展過程的了解程度分類 白箱模型: 指那些內(nèi)部規(guī)律比較清楚的模型。如力學(xué)、熱學(xué)、電學(xué)以及相關(guān)的工程技術(shù)問題。
灰箱模型: 指那些內(nèi)部規(guī)律尚不十分清楚,在建立和改善模型方面都還不同程度地有許多工作要做的問題。 如氣象學(xué)、生態(tài)學(xué)經(jīng)濟(jì)學(xué)等領(lǐng)域的模型。
黑箱模型: 指一些其內(nèi)部規(guī)律還很少為人們所知的現(xiàn)象。如生命科學(xué)、社會(huì)科學(xué)等方面的問題。
但由于因素眾多、關(guān)系復(fù)雜,也可簡(jiǎn)化為灰箱模型來研究。 6、數(shù)學(xué)建模應(yīng)用 今天,在國(guó)民經(jīng)濟(jì)和社會(huì)活動(dòng)的以下諸多方面,數(shù)學(xué)建模都有著非常具體的應(yīng)用。
分析與設(shè)計(jì) 例如描述藥物濃度在人體內(nèi)的變化規(guī)律以分析藥物的療效;建立跨音速空氣流和激波的數(shù)學(xué)模型,用數(shù)值模擬設(shè)計(jì)新的飛機(jī)翼型。 預(yù)報(bào)與決策 生產(chǎn)過程中產(chǎn)品質(zhì)量指標(biāo)的預(yù)報(bào)、氣象預(yù)報(bào)、人口預(yù)報(bào)、經(jīng)濟(jì)增長(zhǎng)預(yù)報(bào)等等,都要有預(yù)報(bào)模型。
使經(jīng)濟(jì)效益最大的價(jià)格策略、使費(fèi)用最少的設(shè)備維修方案,是決策模型的例子。 控制與優(yōu)化 電力、化工生產(chǎn)過程的最優(yōu)控制、零件設(shè)計(jì)中的參數(shù)優(yōu)化,要以數(shù)學(xué)模型為前提。
建立大系統(tǒng)控制與優(yōu)化的數(shù)學(xué)模型,是迫切需要和十分棘手的課題。 規(guī)劃與管理 生產(chǎn)計(jì)劃、資源配置、運(yùn)輸網(wǎng)絡(luò)規(guī)劃、水庫優(yōu)化調(diào)度,以及排隊(duì)策略、物資管理等,都可以用運(yùn)籌學(xué)模型解決。
需要數(shù)學(xué)知識(shí)、計(jì)算機(jī)知識(shí)、最好找個(gè)字跡漂亮的隊(duì)友。
過程 模型準(zhǔn)備 了解問題的實(shí)際背景,明確其實(shí)際意義,掌握對(duì)象的各種信息。用數(shù)學(xué)語言來描述問題。
模型假設(shè) 根據(jù)實(shí)際對(duì)象的特征和建模的目的,對(duì)問題進(jìn)行必要的簡(jiǎn)化,并用精確的語言提出一些恰當(dāng)?shù)募僭O(shè)。模型建立 在假設(shè)的基礎(chǔ)上,利用適當(dāng)?shù)臄?shù)學(xué)工具來刻劃各變量之間的數(shù)學(xué)關(guān)系,建立相應(yīng)的數(shù)學(xué)結(jié)構(gòu)(盡量用簡(jiǎn)單的數(shù)學(xué)工具)。
模型求解 利用獲取的數(shù)據(jù)資料,對(duì)模型的所有參數(shù)做出計(jì)算(或近似計(jì)算)。模型分析 對(duì)所得的結(jié)果進(jìn)行數(shù)學(xué)上的分析。
模型檢驗(yàn) 將模型分析結(jié)果與實(shí)際情形進(jìn)行比較,以此來驗(yàn)證模型的準(zhǔn)確性、合理性和適用性。如果模型與實(shí)際較吻合,則要對(duì)計(jì)算結(jié)果給出其實(shí)際含義,并進(jìn)行解釋。
如果模型與實(shí)際吻合較差,則應(yīng)該修改假設(shè),再次重復(fù)建模過程。模型應(yīng)用 應(yīng)用方式因問題的性質(zhì)和建模的目的而異。
數(shù)學(xué)建模應(yīng)當(dāng)掌握的十類算法 ?? 1、蒙特卡羅算法(該算法又稱隨機(jī)性模擬算法,是通過計(jì)算機(jī)仿真來解決問題的算 法,同時(shí)可以通過模擬可以來檢驗(yàn)自己模型的正確性,是比賽時(shí)必用的方法) 2、數(shù)據(jù)擬合、參數(shù)估計(jì)、插值等數(shù)據(jù)處理算法(比賽中通常會(huì)遇到大量的數(shù)據(jù)需要 處理,而處理數(shù)據(jù)的關(guān)鍵就在于這些算法,通常使用Matlab作為工具) 3、線性規(guī)劃、整數(shù)規(guī)劃、多元規(guī)劃、二次規(guī)劃等規(guī)劃類問題(建模競(jìng)賽大多數(shù)問題 屬于最優(yōu)化問題,很多時(shí)候這些問題可以用數(shù)學(xué)規(guī)劃算法來描述,通常使用Lindo、Lingo軟件實(shí)現(xiàn)) 4、圖論算法(這類算法可以分為很多種,包括最短路、網(wǎng)絡(luò)流、二分圖等算法,涉 及到圖論的問題可以用這些方法解決,需要認(rèn)真準(zhǔn)備) 5、動(dòng)態(tài)規(guī)劃、回溯搜索、分治算法、分支定界等計(jì)算機(jī)算法(這些算法是算法設(shè)計(jì) 中比較常用的方法,很多場(chǎng)合可以用到競(jìng)賽中) 6、最優(yōu)化理論的三大非經(jīng)典算法:模擬退火法、神經(jīng)網(wǎng)絡(luò)、遺傳算法(這些問題是 用來解決一些較困難的最優(yōu)化問題的算法,對(duì)于有些問題非常有幫助,但是算法的實(shí) 現(xiàn)比較困難,需慎重使用) 7、網(wǎng)格算法和窮舉法(網(wǎng)格算法和窮舉法都是暴力搜索最優(yōu)點(diǎn)的算法,在很多競(jìng)賽 題中有應(yīng)用,當(dāng)重點(diǎn)討論模型本身而輕視算法的時(shí)候,可以使用這種暴力方案,最好 使用一些高級(jí)語言作為編程工具) 8、一些連續(xù)離散化方法(很多問題都是實(shí)際來的,數(shù)據(jù)可以是連續(xù)的,而計(jì)算機(jī)只 認(rèn)的是離散的數(shù)據(jù),因此將其離散化后進(jìn)行差分代替微分、求和代替積分等思想是非 常重要的) 9、數(shù)值分析算法(如果在比賽中采用高級(jí)語言進(jìn)行編程的話,那一些數(shù)值分析中常 用的算法比如方程組求解、矩陣運(yùn)算、函數(shù)積分等算法就需要額外編寫庫函數(shù)進(jìn)行調(diào) 用) 10、圖象處理算法(賽題中有一類問題與圖形有關(guān),即使與圖形無關(guān),論文中也應(yīng)該 要不乏圖片的,這些圖形如何展示以及如何處理就是需要解決的問題,通常使用Matlab 進(jìn)行處理) 數(shù)學(xué)建模資料 競(jìng)賽參考書 l、中國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,李大潛主編,高等教育出版社(1998). 2、大學(xué)生數(shù)學(xué)建模競(jìng)賽輔導(dǎo)教材,(一)(二)(三),葉其孝主編,湖南教育 出版社(1993,1997,1998). 3、數(shù)學(xué)建模教育與國(guó)際數(shù)學(xué)建模競(jìng)賽 《工科數(shù)學(xué)》專輯,葉其孝主編, 《工科數(shù)學(xué)》雜志社,1994). 國(guó)內(nèi)教材、叢書 1、數(shù)學(xué)模型,姜啟源編,高等教育出版社(1987年第一版,1993年第二版,2003年第三版;第一版在 1992年國(guó)家教委舉辦的第二屆全國(guó)優(yōu)秀教材評(píng)選中獲"全國(guó)優(yōu)秀教材獎(jiǎng)"). 2、數(shù)學(xué)模型與計(jì)算機(jī)模擬,江裕釗、辛培情編,電子科技大學(xué)出版社,(1989). 3、數(shù)學(xué)模型選談(走向數(shù)學(xué)從書),華羅庚,王元著,王克譯,湖南教育出版社;(1991). 4、數(shù)學(xué)建模--方法與范例,壽紀(jì)麟等編,西安交通大學(xué)出版社(1993). 5、數(shù)學(xué)模型,濮定國(guó)、田蔚文主編,東南大學(xué)出版社(1994). 6..數(shù)學(xué)模型,朱思銘、李尚廉編,中山大學(xué)出版社,(1995) 7、數(shù)學(xué)模型,陳義華編著,重慶大學(xué)出版社,(1995) 8、數(shù)學(xué)模型建模分析,蔡常豐編著,科學(xué)出版社,(1995). 9、數(shù)學(xué)建模競(jìng)賽教程,李尚志主編,江蘇教育出版社,(1996). 10、數(shù)學(xué)建模入門,徐全智、楊晉浩編,成都電子科大出版社,(1996). 11、數(shù)學(xué)建模,沈繼紅、施久玉、高振濱、張曉威編,哈爾濱工程大學(xué)出版社,(1996). 12、數(shù)學(xué)模型基礎(chǔ),王樹禾編著,中國(guó)科學(xué)技術(shù)大學(xué)出版社,(1996). 13、數(shù)學(xué)模型方法,齊歡編著,華中理工大學(xué)出版社,(1996). 14、數(shù)學(xué)建模與實(shí)驗(yàn),南京地區(qū)工科院校數(shù)學(xué)建模與工業(yè)數(shù)學(xué)討論班編,河海大學(xué) 出版社,(1996). 15、數(shù)學(xué)模型與數(shù)學(xué)建模,劉來福、曾文藝編,北京師范大學(xué)出版杜(1997). 16. 數(shù)學(xué)建模,袁震東、洪淵、林武忠、蔣魯敏編,華東師范大學(xué)出版社. 17、數(shù)學(xué)模型,譚永基,俞文吡編,復(fù)旦大學(xué)出版社,(1997). 18、數(shù)學(xué)模型實(shí)用教程,費(fèi)培之、程中瑗層主編,四川大學(xué)出版社,(1998). 19、數(shù)學(xué)建模優(yōu)秀案例選編(工科數(shù)學(xué)基地建設(shè)叢書),汪國(guó)強(qiáng)主編,華南理工大學(xué)出版社,(1998). 20、經(jīng)濟(jì)數(shù)學(xué)模型(第二版)(工科數(shù)學(xué)基地建設(shè)叢書),洪毅、賀德化、昌志華 編著,華南理工大學(xué)出版社,(。
參加數(shù)學(xué)建模競(jìng)賽需知道的內(nèi)容
一、全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽
二、數(shù)學(xué)建模的方法及一般步驟
三、重要的數(shù)學(xué)模型及相應(yīng)案例分析
1、線性規(guī)劃模型及經(jīng)濟(jì)模型案例分析
2、層次分析模型及管理模型案例分析
3、統(tǒng)計(jì)回歸模型及案例分析
4、圖論模型及案例分析
5、微分方程模型及案例分析
四、相關(guān)軟件
1、Matlab軟件及編程;2、Lingo軟件;3、Lindo軟件。
五、數(shù)模十大常用算法
1. 蒙特卡羅算法。2. 數(shù)據(jù)擬合、參數(shù)估計(jì)抄、插值等數(shù)據(jù)處理算法。3. 線性規(guī)劃、整數(shù)規(guī)劃、多元規(guī)劃、二次規(guī)劃等規(guī)劃類算法。4. 圖論算法。5. 動(dòng)態(tài)規(guī)劃、回溯搜索、分治算法、分支定界等計(jì)算機(jī)算法。6. 最優(yōu)化理論的三大非經(jīng)典算法。7. 網(wǎng)格算法和窮舉法。8. 一些連續(xù)數(shù)據(jù)離散化方法。9. 數(shù)值分析算法。10. 圖象處理算法。
六、如何查閱資料
七、如何寫作論文
八、如何組織隊(duì)伍:團(tuán)隊(duì)精神,配合良好,不斷的提出問題和解決問題。
九、如何才能獲獎(jiǎng):比較完整,有幾處創(chuàng)新點(diǎn)。
十、如何信息處理:WORD、LaTeX,飛秋、zhidaoQQ。
其實(shí)主要看下例子就可以了,知道一些基本的模型,我這里也有很多例子,各個(gè)學(xué)校的講座都有要的話直接向我要
數(shù)學(xué)建模數(shù)學(xué)建模就是用數(shù)學(xué)語言描述實(shí)際現(xiàn)象的過程。
這里的實(shí)際現(xiàn)象既包涵具體的自然現(xiàn)象比如自由落體現(xiàn)象,也包涵抽象的現(xiàn)象比如顧客對(duì)某種商品所取的價(jià)值傾向。這里的描述不但包括外在形態(tài),內(nèi)在機(jī)制的描述,也包括預(yù)測(cè),試驗(yàn)和解釋實(shí)際現(xiàn)象等內(nèi)容。
我們也可以這樣直觀地理解這個(gè)概念:數(shù)學(xué)建模是一個(gè)讓純粹數(shù)學(xué)家(指只懂?dāng)?shù)學(xué)不懂?dāng)?shù)學(xué)在實(shí)際中的應(yīng)用的數(shù)學(xué)家)變成物理學(xué)家,生物學(xué)家,經(jīng)濟(jì)學(xué)家甚至心理學(xué)家等等的過程。數(shù)學(xué)模型一般是實(shí)際事物的一種數(shù)學(xué)簡(jiǎn)化。
它常常是以某種意義上接近實(shí)際事物的抽象形式存在的,但它和真實(shí)的事物有著本質(zhì)的區(qū)別。要描述一個(gè)實(shí)際現(xiàn)象可以有很多種方式,比如錄音,錄像,比喻,傳言等等。
為了使描述更具科學(xué)性,邏輯性,客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學(xué)。使用數(shù)學(xué)語言描述的事物就稱為數(shù)學(xué)模型。
有時(shí)候我們需要做一些實(shí)驗(yàn),但這些實(shí)驗(yàn)往往用抽象出來了的數(shù)學(xué)模型作為實(shí)際物體的代替而進(jìn)行相應(yīng)的實(shí)驗(yàn),實(shí)驗(yàn)本身也是實(shí)際操作的一種理論替代。數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué),在它產(chǎn)生和發(fā)展的歷史長(zhǎng)河中,一直是和各種各樣的應(yīng)用問題緊密相關(guān)的。
數(shù)學(xué)的特點(diǎn)不僅在于概念的抽象性、邏輯的嚴(yán)密性,結(jié)論的明確性和體系的完整性,而且在于它應(yīng)用的廣泛性,進(jìn)入20世紀(jì)以來,隨著科學(xué)技術(shù)的迅速發(fā)展和計(jì)算機(jī)的日益普及,人們對(duì)各種問題的要求越來越精確,使得數(shù)學(xué)的應(yīng)用越來越廣泛和深入,特別是在即將進(jìn)入21世紀(jì)的知識(shí)經(jīng)濟(jì)時(shí)代,數(shù)學(xué)科學(xué)的地位會(huì)發(fā)生巨大的變化,它正在從國(guó)或經(jīng)濟(jì)和科技的后備走到了前沿。經(jīng)濟(jì)發(fā)展的全球化、計(jì)算機(jī)的迅猛發(fā)展,數(shù)學(xué)理倫與方法的不斷擴(kuò)充使得數(shù)學(xué)已經(jīng)成為當(dāng)代高科技的一個(gè)重要組成部分和思想庫,數(shù)學(xué)已經(jīng)成為一種能夠普遍實(shí)施的技術(shù)。
培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和能力已經(jīng)成為數(shù)學(xué)教學(xué)的一個(gè)重要方面。應(yīng)用數(shù)學(xué)去解決各類實(shí)際問題時(shí),建立數(shù)學(xué)模型是十分關(guān)鍵的一步,同時(shí)也是十分困難的一步。
建立教學(xué)模型的過程,是把錯(cuò)綜復(fù)雜的實(shí)際問題簡(jiǎn)化、抽象為合理的數(shù)學(xué)結(jié)構(gòu)的過程。要通過調(diào)查、收集數(shù)據(jù)資料,觀察和研究實(shí)際對(duì)象的固有特征和內(nèi)在規(guī)律,抓住問題的主要矛盾,建立起反映實(shí)際問題的數(shù)量關(guān)系,然后利用數(shù)學(xué)的理論和方法去分析和解決問題。
這就需要深厚扎實(shí)的數(shù)學(xué)基礎(chǔ),敏銳的洞察力和想象力,對(duì)實(shí)際問題的濃厚興趣和廣博的知識(shí)面。數(shù)學(xué)建模是聯(lián)系數(shù)學(xué)與實(shí)際問題的橋梁,是數(shù)學(xué)在各個(gè)領(lǐng)械廣泛應(yīng)用的媒介,是數(shù)學(xué)科學(xué)技術(shù)轉(zhuǎn)化的主要途徑,數(shù)學(xué)建模在科學(xué)技術(shù)發(fā)展中的重要作用越來越受到數(shù)學(xué)界和工程界的普遍重視,它已成為現(xiàn)代科技工作者必備的重要能力之。
為了適應(yīng)科學(xué)技術(shù)發(fā)展的需要和培養(yǎng)高質(zhì)量、高層次科技人才,數(shù)學(xué)建模已經(jīng)在大學(xué)教育中逐步開展,國(guó)內(nèi)外越來越多的大學(xué)正在進(jìn)行數(shù)學(xué)建模課程的教學(xué)和參加開放性的數(shù)學(xué)建模競(jìng)賽,將數(shù)學(xué)建模教學(xué)和競(jìng)賽作為高等院校的教學(xué)改革和培養(yǎng)高層次的科技人才的個(gè)重要方面,現(xiàn)在許多院校正在將數(shù)學(xué)建模與教學(xué)改革相結(jié)合,努力探索更有效的數(shù)學(xué)建模教學(xué)法和培養(yǎng)面向21世紀(jì)的人才的新思路,與我國(guó)高校的其它數(shù)學(xué)類課程相比,數(shù)學(xué)建模具有難度大、涉及面廣、形式靈活,對(duì)教師和學(xué)生要求高等特點(diǎn),數(shù)學(xué)建模的教學(xué)本身是一個(gè)不斷探索、不斷創(chuàng)新、不斷完善和提高的過程。為了改變過去以教師為中心、以課堂講授為主、以知識(shí)傳授為主的傳統(tǒng)教學(xué)模式,數(shù)學(xué)建模課程指導(dǎo)思想是:以實(shí)驗(yàn)室為基礎(chǔ)、以學(xué)生為中心、以問題為主線、以培養(yǎng)能力為目標(biāo)來組織教學(xué)工作。
通過教學(xué)使學(xué)生了解利用數(shù)學(xué)理論和方法去分析和解決問題的全過程,提高他們分析問題和解決問題的能力;提高他們學(xué)習(xí)數(shù)學(xué)的興趣和應(yīng)用數(shù)學(xué)的意識(shí)與能力,使他們?cè)谝院蟮墓ぷ髦心芙?jīng)常性地想到用數(shù)學(xué)去解決問題,提高他們盡量利用計(jì)算機(jī)軟件及當(dāng)代高新科技成果的意識(shí),能將數(shù)學(xué)、計(jì)算機(jī)有機(jī)地結(jié)合起來去解決實(shí)際問題。數(shù)學(xué)建模以學(xué)生為主,教師利用一些事先設(shè)計(jì)好問題啟發(fā),引導(dǎo)學(xué)生主動(dòng)查閱文獻(xiàn)資料和學(xué)習(xí)新知識(shí),鼓勵(lì)學(xué)生 積極開展討論和辯論,培養(yǎng)學(xué)生主動(dòng)探索,努力進(jìn)取的學(xué)風(fēng),培養(yǎng)學(xué)生從事科研工作的初步能力,培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神、形成一個(gè)生動(dòng)活潑的環(huán)境和氣氛,教學(xué)過程的重點(diǎn)是創(chuàng)造一個(gè)環(huán)境去誘導(dǎo)學(xué)生的學(xué)習(xí)欲望、培養(yǎng)他們的自學(xué)能力,增強(qiáng)他們的數(shù)學(xué)素質(zhì)和創(chuàng)新能力,提高他們的數(shù)舉素質(zhì),強(qiáng)調(diào)的是獲取新知識(shí)的能力,是解決問題的過程,而不是知識(shí)與結(jié)果。
接受參加數(shù)學(xué)建模競(jìng)賽賽前培訓(xùn)的同學(xué)大都需要學(xué)習(xí)諸如數(shù)理統(tǒng)計(jì)、最優(yōu)化、圖論、微分方程、計(jì)算方法、神經(jīng)網(wǎng)絡(luò)、層次分析法、模糊數(shù)學(xué),數(shù)學(xué)軟件包的使用等等“短課程”(或講座),用的學(xué)時(shí)不多,多數(shù)是啟發(fā)性的講一些基本的概念和方法,主要是靠同學(xué)們自己去學(xué),充分調(diào)動(dòng)同學(xué)們的積極性,充分發(fā)揮同學(xué)們的潛能。培訓(xùn)中廣泛地采用的討論班方式,同學(xué)自己報(bào)告、討論、辯論,教師主要起質(zhì)疑、答疑、輔導(dǎo)的作用,競(jìng)賽中一定要使用計(jì)算機(jī)及相應(yīng)的軟件,如Mathemathmatica,Matlab,Mapple,甚至排版軟件等。
數(shù)。
聲明:本網(wǎng)站尊重并保護(hù)知識(shí)產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請(qǐng)?jiān)谝粋€(gè)月內(nèi)通知我們,我們會(huì)及時(shí)刪除。
蜀ICP備2020033479號(hào)-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁面生成時(shí)間:2.895秒