乘法與因式分解 a^2-b^2=(a+b)(a-b) a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b(a^2+ab+b^2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a 根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達定理 判別式 b^2-4ac=0 注:方程有兩個相等的實根 b^2-4ac>0 注:方程有兩個不等的實根 b^2-4ac0 拋物線標準方程 y^2=2px y^2=-2px x^2=2py x^2=-2py 直棱柱側(cè)面積 S=c*h 斜棱柱側(cè)面積 S=c'*h 正棱錐側(cè)面積 S=1/2c*h' 正棱臺側(cè)面積 S=1/2(c+c')h' 圓臺側(cè)面積 S=1/2(c+c')l=pi(R+r)l 球的表面積 S=4pi*r2 圓柱側(cè)面積 S=c*h=2pi*h 圓錐側(cè)面積 S=1/2*c*l=pi*r*l 弧長公式 l=a*r a是圓心角的弧度數(shù)r >0 扇形面積公式 s=1/2*l*r 錐體體積公式 V=1/3*S*H 圓錐體體積公式 V=1/3*pi*r2h 斜棱柱體積 V=S'L 注:其中,S'是直截面面積, L是側(cè)棱長 柱體體積公式 V=s*h 圓柱體 V=pi*r2h 定理: 1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連接的所有線段中,垂線段最短 7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行 8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行 9 同位角相等,兩直線平行 10 內(nèi)錯角相等,兩直線平行 11 同旁內(nèi)角互補,兩直線平行 12兩直線平行,同位角相等 13 兩直線平行,內(nèi)錯角相等 14 兩直線平行,同旁內(nèi)角互補 15 定理 三角形兩邊的和大于第三邊 16 推論 三角形兩邊的差小于第三邊 17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180° 18 推論1 直角三角形的兩個銳角互余 19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和 20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角 21 全等三角形的對應(yīng)邊、對應(yīng)角相等 22邊角邊公理(SAS) 有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等 作者:塵世的Angel 2008-11-22 22:48 回復(fù)此發(fā)言 --------------------------------------------------------------------------------2 高中數(shù)學(xué)公式 23 角邊角公理( ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等 24 推論(AAS) 有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等 25 邊邊邊公理(SSS) 有三邊對應(yīng)相等的兩個三角形全等 26 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等 27 定理1 在角的平分線上的點到這個角的兩邊的距離相等 28 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 29 角的平分線是到角的兩邊距離相等的所有點的集合 30 等腰三角形的性質(zhì)定理 等腰三角形的兩個底角相等 (即等邊對等角) 31 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 32 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 33 推論3 等邊三角形的各角都相等,并且每一個角都等于60° 34 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) 35 推論1 三個角都相等的三角形是等邊三角形 36 推論 2 有一個角等于60°的等腰三角形是等邊三角形 37 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 38 直角三角形斜邊上的中線等于斜邊上的一半 39 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 40 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 41 線段的垂直平分線可看。
(1)數(shù)列本身的有關(guān)知識,其中有等差數(shù)列與等比數(shù)列的概念、性質(zhì)、通項公式及求和公式。
(2)數(shù)列與其它知識的結(jié)合,其中有數(shù)列與函數(shù)、方程、不等式、三角、幾何的結(jié)合。
(3)數(shù)列的應(yīng)用問題,其中主要是以增長率問題為主。
試題的難度有三個層次,小題多以基礎(chǔ)題為主,解答題多以基礎(chǔ)題和中檔題為主,只有個別地方用數(shù)列與幾何的綜合與函數(shù)、不等式的綜合作為最后一題,難度較大。
接下來為大家介紹下高中數(shù)列解題中,經(jīng)常會用到的幾種方法,大家可以按照這個解題思路來回答數(shù)列相關(guān)的問題,掌握了這幾點并融會貫通,你會發(fā)現(xiàn),數(shù)列其實并不難。
(1)函數(shù)的思想方法
數(shù)列本身就是一個特殊的函數(shù),而且是離散的函數(shù),因此在解題過程中,尤其在遇到等差數(shù)列與等比數(shù)列這兩類特殊的數(shù)列時,可以將它們看成一個函數(shù),進而運用函數(shù)的性質(zhì)和特點來解決問題。
(2)方程的思想方法
數(shù)列這一章涉及了多個關(guān)于首項、末項、項數(shù)、公差、公比、第n項和前n項和這些量的數(shù)學(xué)公式,而公式本身就是一個等式,因此,在求這些數(shù)學(xué)量的過程中,可將它們看成相應(yīng)的已知量和未知數(shù),通過公式建立關(guān)于求未知量的方程,可以使解題變得清晰、明了,而且簡化了解題過程。
(3)不完全歸納法
不完全歸納法不但可以培養(yǎng)學(xué)生的數(shù)學(xué)直觀,而且可以幫助學(xué)生有效的解決問題,在等差數(shù)列以及等比數(shù)列通項公式推導(dǎo)的過程就用到了不完全歸納法。
(4)倒序相加法
等差數(shù)列前n項和公式的推導(dǎo)過程中,就根據(jù)等差數(shù)列的特點,很好的應(yīng)用了倒序相加法,而且在這一章的很多問題都直接或間接地用到了這種方法。
(5)錯位相減法
錯位相減法是另一類數(shù)列求和的方法,它主要應(yīng)用于求和的項之間通過一定的變形可以相互轉(zhuǎn)化,并且是多個數(shù)求和的問題。等比數(shù)列的前n項和公式的推導(dǎo)就用到了這種思想方法。
高中數(shù)學(xué)主要分為函數(shù)與方程、立體幾何、解析幾何、數(shù)列、統(tǒng)計和概率,這幾大部分組成。
函數(shù)包括介紹了9個基本初等函數(shù),函數(shù)的性質(zhì)和應(yīng)用,很少的高數(shù)基礎(chǔ)知識(導(dǎo)數(shù)和定積分)。這些都是考試的重點!! 立體幾何包括了各種垂直與平行的問題【線線垂直(平行)、線面垂直(平行)、面面垂直(平行)】、求空間的角(常用幾何法和坐標法)、求幾何體的體積或表面積。
這部分的考題比較題型固定,解法也比較固定。 解析幾何包括直線、圓、二次曲線(橢圓、雙曲線、拋物線)。
這類題題型比較多,但是解法卻比較固定(一般都是先設(shè)方程、再聯(lián)立方程、通過其他條件(經(jīng)常會用到韋達定理)求解參數(shù)。最后解出答案。)
數(shù)列的題目相當(dāng)靈活,一般求通項、求和會經(jīng)常考到,還經(jīng)常和函數(shù)聯(lián)系一起出題。所以這類題一般都會是壓軸題。
統(tǒng)計和概率是比較簡單的題。而且題型和解法都很固定,一般輔導(dǎo)書都比較詳細。
這些是我總結(jié)的,希望對你有幫助!。
一、集合與簡易邏輯 1.集合的元素具有確定性、無序性和互異性. 2.對集合 , 時,必須注意到“極端”情況: 或 ;求集合的子集時是否注意到 是任何集合的子集、是任何非空集合的真子集. 3.對于含有 個元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個數(shù)依次為 4.“交的補等于補的并,即 ”;“并的補等于補的交,即 ”. 5.判斷命題的真假 關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”. 6.“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”. 7.四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”. 原命題等價于逆否命題,但原命題與逆命題、否命題都不等價.反證法分為三步:假設(shè)、推矛、得果. 注意:命題的否定是“命題的非命題,也就是‘條件不變,僅否定結(jié)論’所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結(jié)論作為結(jié)論的所得命題” ?. 8.充要條件 二、函 數(shù) 1.指數(shù)式、對數(shù)式, , , , , , , , , , . 2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合 中的元素必有像,但第二個集合 中的元素不一定有原像( 中元素的像有且僅有下一個,但 中元素的原像可能沒有,也可任意個);函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集 的子集”. (2)函數(shù)圖像與 軸垂線至多一個公共點,但與 軸垂線的公共點可能沒有,也可任意個. (3)函數(shù)圖像一定是坐標系中的曲線,但坐標系中的曲線不一定能成為函數(shù)圖像. 3.單調(diào)性和奇偶性 (1)奇函數(shù)在關(guān)于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同. 偶函數(shù)在關(guān)于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反. 注意:(1)確定函數(shù)的奇偶性,務(wù)必先判定函數(shù)定義域是否關(guān)于原點對稱.確定函數(shù)奇偶性的常用方法有:定義法、圖像法等等.對于偶函數(shù)而言有: . (2)若奇函數(shù)定義域中有0,則必有 .即 的定義域時, 是 為奇函數(shù)的必要非充分條件. (3)確定函數(shù)的單調(diào)性或單調(diào)區(qū)間,在解答題中常用:定義法(取值、作差、鑒定)、導(dǎo)數(shù)法;在選擇、填空題中還有:數(shù)形結(jié)合法(圖像法)、特殊值法等等. (4)既奇又偶函數(shù)有無窮多個( ,定義域是關(guān)于原點對稱的任意一個數(shù)集). (7)復(fù)合函數(shù)的單調(diào)性特點是:“同性得增,增必同性;異性得減,減必異性”. 復(fù)合函數(shù)的奇偶性特點是:“內(nèi)偶則偶,內(nèi)奇同外”.復(fù)合函數(shù)要考慮定義域的變化。
(即復(fù)合有意義) 4.對稱性與周期性(以下結(jié)論要消化吸收,不可強記) (1)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對稱. 推廣一:如果函數(shù) 對于一切 ,都有 成立,那么 的圖像關(guān)于直線 (由“ 和的一半 確定”)對稱. 推廣二:函數(shù) , 的圖像關(guān)于直線 (由 確定)對稱. (2)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對稱. (3)函數(shù) 與函數(shù) 的圖像關(guān)于坐標原點中心對稱. 推廣:曲線 關(guān)于直線 的對稱曲線是 ; 曲線 關(guān)于直線 的對稱曲線是 . (5)類比“三角函數(shù)圖像”得:若 圖像有兩條對稱軸 ,則 必是周期函數(shù),且一周期為 . 如果 是R上的周期函數(shù),且一個周期為 ,那么 . 特別:若 恒成立,則 .若 恒成立,則 .若 恒成立,則 . 三、數(shù) 列 1.數(shù)列的通項、數(shù)列項的項數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項與數(shù)列的前 項和公式的關(guān)系: (必要時請分類討論). 注意: ; . 2.等差數(shù)列 中: (1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性. (2) ; . (3) 、也成等差數(shù)列. (4)兩等差數(shù)列對應(yīng)項和(差)組成的新數(shù)列仍成等差數(shù)列. (5) 仍成等差數(shù)列. (6) , , , , . (7) ; ; . (8)“首正”的遞減等差數(shù)列中,前 項和的最大值是所有非負項之和; “首負”的遞增等差數(shù)列中,前 項和的最小值是所有非正項之和; (9)有限等差數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定.若總項數(shù)為偶數(shù),則“偶數(shù)項和”-“奇數(shù)項和”=總項數(shù)的一半與其公差的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和”-“偶數(shù)項和”=此數(shù)列的中項. (10)兩數(shù)的等差中項惟一存在.在遇到三數(shù)或四數(shù)成等差數(shù)列時,常考慮選用“中項關(guān)系”轉(zhuǎn)化求解. (11)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式). 3.等比數(shù)列 中: (1)等比數(shù)列的符號特征(全正或全負或一正一負),等比數(shù)列的首項、公比與等比數(shù)列的單調(diào)性. (2) ; . (3) 、、成等比數(shù)列; 成等比數(shù)列 成等比數(shù)列. (4)兩等比數(shù)列對應(yīng)項積(商)組成的新數(shù)列仍成等比數(shù)列. (5) 成等比數(shù)列. (6) . 特別: . (7) . (8)“首大于1”的正值遞減等比數(shù)列中,前 項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數(shù)列中,前 項積的最小值是所有小于或等于1的項的積; (9)有限等比數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定.若總項數(shù)為偶數(shù),則“偶數(shù)項和”=“奇數(shù)項和”與“公比”的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和”=“首項”加上“公比”與“偶數(shù)項和”積的和. (10)并非任何兩數(shù)總有等。
高中數(shù)學(xué)重點知識與結(jié)論分類解析一、集合與簡易邏輯1.集合的元素具有確定性、無序性和互異性.2.對集合 , 時,必須注意到“極端”情況: 或 ;求集合的子集時是否注意到 是任何集合的子集、是任何非空集合的真子集.3.對于含有 個元素的有限集合 ,其子集、真子集、非空子集、非空真子集的個數(shù)依次為 4.“交的補等于補的并,即 ”;“并的補等于補的交,即 ”.5.判斷命題的真假 關(guān)鍵是“抓住關(guān)聯(lián)字詞”;注意:“不‘或’即‘且’,不‘且’即‘或’”.6.“或命題”的真假特點是“一真即真,要假全假”;“且命題”的真假特點是“一假即假,要真全真”;“非命題”的真假特點是“一真一假”.7.四種命題中“‘逆’者‘交換’也”、“‘否’者‘否定’也”.原命題等價于逆否命題,但原命題與逆命題、否命題都不等價.反證法分為三步:假設(shè)、推矛、得果.注意:命題的否定是“命題的非命題,也就是‘條件不變,僅否定結(jié)論’所得命題”,但否命題是“既否定原命題的條件作為條件,又否定原命題的結(jié)論作為結(jié)論的所得命題” ?.8.充要條件二、函 數(shù)1.指數(shù)式、對數(shù)式,2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一個集合 中的元素必有像,但第二個集合 中的元素不一定有原像( 中元素的像有且僅有下一個,但 中元素的原像可能沒有,也可任意個);函數(shù)是“非空數(shù)集上的映射”,其中“值域是映射中像集 的子集”.(2)函數(shù)圖像與 軸垂線至多一個公共點,但與 軸垂線的公共點可能沒有,也可任意個.(3)函數(shù)圖像一定是坐標系中的曲線,但坐標系中的曲線不一定能成為函數(shù)圖像.3.單調(diào)性和奇偶性(1)奇函數(shù)在關(guān)于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性完全相同.偶函數(shù)在關(guān)于原點對稱的區(qū)間上若有單調(diào)性,則其單調(diào)性恰恰相反.注意:(1)確定函數(shù)的奇偶性,務(wù)必先判定函數(shù)定義域是否關(guān)于原點對稱.確定函數(shù)奇偶性的常用方法有:定義法、圖像法等等.對于偶函數(shù)而言有: .(2)若奇函數(shù)定義域中有0,則必有 .即 的定義域時, 是 為奇函數(shù)的必要非充分條件.(3)確定函數(shù)的單調(diào)性或單調(diào)區(qū)間,在解答題中常用:定義法(取值、作差、鑒定)、導(dǎo)數(shù)法;在選擇、填空題中還有:數(shù)形結(jié)合法(圖像法)、特殊值法等等.(4)既奇又偶函數(shù)有無窮多個( ,定義域是關(guān)于原點對稱的任意一個數(shù)集).(7)復(fù)合函數(shù)的單調(diào)性特點是:“同性得增,增必同性;異性得減,減必異性”.復(fù)合函數(shù)的奇偶性特點是:“內(nèi)偶則偶,內(nèi)奇同外”.復(fù)合函數(shù)要考慮定義域的變化。
(即復(fù)合有意義)4.對稱性與周期性(以下結(jié)論要消化吸收,不可強記)(1)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對稱.推廣一:如果函數(shù) 對于一切 ,都有 成立,那么 的圖像關(guān)于直線 (由“ 和的一半 確定”)對稱.推廣二:函數(shù) , 的圖像關(guān)于直線 (由 確定)對稱.(2)函數(shù) 與函數(shù) 的圖像關(guān)于直線 ( 軸)對稱.(3)函數(shù) 與函數(shù) 的圖像關(guān)于坐標原點中心對稱.推廣:曲線 關(guān)于直線 的對稱曲線是 ;曲線 關(guān)于直線 的對稱曲線是 .(5)類比“三角函數(shù)圖像”得:若 圖像有兩條對稱軸 ,則 必是周期函數(shù),且一周期為 .如果 是R上的周期函數(shù),且一個周期為 ,那么 .特別:若 恒成立,則 .若 恒成立,則 .若 恒成立,則 .三、數(shù) 列1.數(shù)列的通項、數(shù)列項的項數(shù),遞推公式與遞推數(shù)列,數(shù)列的通項與數(shù)列的前 項和公式的關(guān)系: (必要時請分類討論).注意: ; .2.等差數(shù)列 中:(1)等差數(shù)列公差的取值與等差數(shù)列的單調(diào)性.(2) ; .(3) 、也成等差數(shù)列.(4)兩等差數(shù)列對應(yīng)項和(差)組成的新數(shù)列仍成等差數(shù)列.(5) 仍成等差數(shù)列.(8)“首正”的遞等差數(shù)列中,前 項和的最大值是所有非負項之和;“首負”的遞增等差數(shù)列中,前 項和的最小值是所有非正項之和;(9)有限等差數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定.若總項數(shù)為偶數(shù),則“偶數(shù)項和”-“奇數(shù)項和”=總項數(shù)的一半與其公差的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和”-“偶數(shù)項和”=此數(shù)列的中項.(10)兩數(shù)的等差中項惟一存在.在遇到三數(shù)或四數(shù)成等差數(shù)列時,常考慮選用“中項關(guān)系”轉(zhuǎn)化求解.(11)判定數(shù)列是否是等差數(shù)列的主要方法有:定義法、中項法、通項法、和式法、圖像法(也就是說數(shù)列是等差數(shù)列的充要條件主要有這五種形式).3.等比數(shù)列 中:(1)等比數(shù)列的符號特征(全正或全負或一正一負),等比數(shù)列的首項、公比與等比數(shù)列的單調(diào)性.(3) 、、成等比數(shù)列; 成等比數(shù)列 成等比數(shù)列.(4)兩等比數(shù)列對應(yīng)項積(商)組成的新數(shù)列仍成等比數(shù)列.(8)“首大于1”的正值遞減等比數(shù)列中,前 項積的最大值是所有大于或等于1的項的積;“首小于1”的正值遞增等比數(shù)列中,前 項積的最小值是所有小于或等于1的項的積;(9)有限等比數(shù)列中,奇數(shù)項和與偶數(shù)項和的存在必然聯(lián)系,由數(shù)列的總項數(shù)是偶數(shù)還是奇數(shù)決定.若總項數(shù)為偶數(shù),則“偶數(shù)項和”=“奇數(shù)項和”與“公比”的積;若總項數(shù)為奇數(shù),則“奇數(shù)項和”=“首項”加上“公比”與“偶數(shù)項和”積的和.(10)并非任何兩數(shù)總有等比中項.僅當(dāng)實數(shù) 同號時,實數(shù) 存在等比中項.對同號兩實數(shù) 的等比中項不僅存在,而且。
倒序相加法(等差數(shù)列前n項和公式推導(dǎo)方法)錯位相減法(等比數(shù)列前n項和公式推導(dǎo)方法)分組求和法拆項求和法疊加求和法數(shù)列求和關(guān)鍵是分析其通項公式的特點9、一般數(shù)列的通項an與前n項和Sn的關(guān)系:an= 10、等差數(shù)列的通項公式:an=a1 (n-1)d an=ak (n-k)d (其中a1為首項、ak為已知的第k項) 當(dāng)d≠0時,an是關(guān)于n的一次式;當(dāng)d=0時,an是一個常數(shù)。
11、等差數(shù)列的前n項和公式:Sn= Sn= Sn= 當(dāng)d≠0時,Sn是關(guān)于n的二次式且常數(shù)項為0;當(dāng)d=0時(a1≠0),Sn=na1是關(guān)于n的正比例式。12、等比數(shù)列的通項公式:an= a1 qn-1 an= ak qn-k (其中a1為首項、ak為已知的第k項,an≠0)13、等比數(shù)列的前n項和公式:當(dāng)q=1時,Sn=n a1 (是關(guān)于n的正比例式);當(dāng)q≠1時,Sn= Sn= 三、有關(guān)等差、等比數(shù)列的結(jié)論14、等差數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等差數(shù)列。
15、等差數(shù)列{an}中,若m n=p q,則 16、等比數(shù)列{an}中,若m n=p q,則 17、等比數(shù)列{an}的任意連續(xù)m項的和構(gòu)成的數(shù)列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍為等比數(shù)列。 18、兩個等差數(shù)列{an}與{bn}的和差的數(shù)列{an bn}、{an-bn}仍為等差數(shù)列。
19、兩個等比數(shù)列{an}與{bn}的積、商、倒數(shù)組成的數(shù)列{an bn}、、仍為等比數(shù)列。 20、等差數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等差數(shù)列。
21、等比數(shù)列{an}的任意等距離的項構(gòu)成的數(shù)列仍為等比數(shù)列。22、三個數(shù)成等差的設(shè)法:a-d,a,a d;四個數(shù)成等差的設(shè)法:a-3d,a-d,a d,a 3d23、三個數(shù)成等比的設(shè)法:a/q,a,aq;四個數(shù)成等比的錯誤設(shè)法:a/q3,a/q,aq,aq3 (為什么?)24、{an}為等差數(shù)列,則 (c>0)是等比數(shù)列。
25、{bn}(bn>0)是等比數(shù)列,則{logcbn} (c>0且c 1) 是等差數(shù)列。26。
在等差數(shù)列 中:(1)若項數(shù)為 ,則 (2)若數(shù)為 則,,27。 在等比數(shù)列 中:(1) 若項數(shù)為 ,則 (2)若數(shù)為 則,四、數(shù)列求和的常用方法:公式法、裂項相消法、錯位相減法、倒序相加法等。
關(guān)鍵是找數(shù)列的通項結(jié)構(gòu)。 28、分組法求數(shù)列的和:如an=2n 3n 29、錯位相減法求和:如an=(2n-1)2n30、裂項法求和:如an=1/n(n 1)31、倒序相加法求和:如an= 32、求數(shù)列{an}的最大、最小項的方法:① an 1-an=…… 如an= -2n2 29n-3 ② (an>0) 如an= ③ an=f(n) 研究函數(shù)f(n)的增減性 如an= 33、在等差數(shù)列 中,有關(guān)Sn 的最值問題——常用鄰項變號法求(1)當(dāng) >0,d。
初中數(shù)學(xué)的基礎(chǔ)知識高中數(shù)學(xué)都需要。
初中數(shù)學(xué)內(nèi)容: 代數(shù)部分: 1、有理數(shù)、無理數(shù)、實數(shù)。 2、整式、分式、二次根式。
3、一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式。 4、函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))。
5、統(tǒng)計初步。 幾何部分: 1、線段、角。
2、相交線、平行線。 3、三角形。
4、四邊形。 5、相似形。
6、圓。 高中數(shù)學(xué)是全國高中生學(xué)習(xí)的一門學(xué)科。
包括《集合與函數(shù)》《三角函數(shù)》《不等式》《數(shù)列》《復(fù)數(shù)》《排列、組合、二項式定理》《立體幾何》《平面解析幾何》等部分。 高中數(shù)學(xué)知識框架: 在必修一里面主要學(xué)習(xí)了集合,包含集合的含義與表示,集合的基本關(guān)系,集合的基本運算;在剩下的幾個章節(jié)則學(xué)習(xí)了幾個重要的基本初等函數(shù) 在必修二里面則是學(xué)習(xí)了立體幾何初步:包含簡單幾何體與簡單多面體的三視圖,空間圖形的位置關(guān)系。
部分規(guī)則空間幾何體的體積與表面積,第二章以數(shù)形結(jié)合的形式向大家介紹了圓和直線的性質(zhì),理科生則深入學(xué)習(xí)了空間直角坐標系 在必修三部分是對簡單的概率論與數(shù)理統(tǒng)計進行了學(xué)習(xí)。和算法初步進行了學(xué)習(xí)。
必修四開端又學(xué)習(xí)了另一種基本初等函數(shù)--三角函數(shù),在高中階段主要是學(xué)習(xí)了,正弦,余弦,正切三個三角函數(shù)的性質(zhì)與圖像及三者之間的關(guān)系。包括三角函數(shù)限,弧度制,誘導(dǎo)公式等。
第二章則是學(xué)習(xí)了平面向量這一數(shù)學(xué)工具,這一章學(xué)習(xí)了向量的表示,向量的模和單位化,數(shù)量積和簡單應(yīng)用。在第三章又深入學(xué)習(xí)了三角函數(shù)的半角公式,和角,差角公式,2倍角公式。
在進一步延伸后又學(xué)習(xí)了降冪公式。 必修五第一章主要講了等差與等比數(shù)列的性質(zhì),通項公式與前N項和的運算,第二章屬平面解析幾何的內(nèi)容,主要介紹了正弦,余弦定理,第三章主要學(xué)習(xí)了不等式的性質(zhì)與概念與LP問題初步(圖解法)。
選修2-1第一章是常用邏輯用語,主要講述了充分條件,必要條件和“或,且,非”等邏輯量詞,在第二章節(jié)是又進一步講述了空間解析幾何與向量代數(shù),理科生又多學(xué)習(xí)了二面角定理。第三章則是介紹了圓錐曲線有關(guān)知識,包括橢圓,雙曲線,拋物線的定義性質(zhì),圖像等。
選修2—2:第一章是推理與證明:介紹了歸納推理與類比推理,綜合法,分析法,反證法,和歸納法。第二章和第三章則是導(dǎo)數(shù)的有關(guān)性質(zhì)與運用。
第四章介紹了簡單的微積分性質(zhì)與運用(曲邊梯形面積和與簡單幾何體體積);第五章介紹了數(shù)系的擴充。主要介紹了復(fù)數(shù)的表示,性質(zhì),運算等 選修2-3:主要為理科生學(xué)習(xí),第一章為排列與組合,主要學(xué)習(xí)了科學(xué)技術(shù)原理,排列,組合和二項式定理。
第二章則介紹了二項分布,正態(tài)分布等常見的概率分布,第三章則是介紹了獨立性檢驗與簡單的線性回歸分析。
二、高中數(shù)學(xué)的特點 往往有同學(xué)進入高中以后不能適應(yīng)數(shù)學(xué)學(xué)習(xí),進而影響到學(xué)習(xí)的積極性,甚至成績一落千丈。
為什么會這樣呢?讓我們先看看高中數(shù)學(xué)和初中數(shù)學(xué)有些什么樣的轉(zhuǎn)變吧。 1.理論加強 2.課程增多 3.難度增大 4.要求提高 三、掌握數(shù)學(xué)思想 高中數(shù)學(xué)從學(xué)習(xí)方法和思想方法上更接近于高等數(shù)學(xué)。
學(xué)好它,需要我們從方法論的高度來掌握它。我們在研究數(shù)學(xué)問題時要經(jīng)常運用唯物辯證的思想去解決數(shù)學(xué)問題。
數(shù)學(xué)思想,實質(zhì)上就是唯物辯證法在數(shù)學(xué)中的運用的反映。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點掌握的的數(shù)學(xué)思想有以上幾個:集合與對應(yīng)思想,初步公理化思想,數(shù)形結(jié)合思想,運動思想,轉(zhuǎn)化思想,變換思想。
例如,數(shù)列、一次函數(shù)、解析幾何中的直線幾個概念都可以用函數(shù)(特殊的對應(yīng))的概念來統(tǒng)一。又比如,數(shù)、方程、不等式、數(shù)列幾個概念也都可以統(tǒng)一到函數(shù)概念。
再看看下面這個運用“矛盾”的觀點來解題的例子。 已知動點Q在圓x2+y2=1上移動,定點P(2,0),求線段PQ中點的軌跡。
分析此題,圖中P、Q、M三點是互相制約的,而Q點的運動將帶動M點的運動;主要矛盾是點Q的運動,而點Q的運動軌跡遵循方程x02+y02=1①;次要矛盾關(guān)系:M是線段PQ的中點,可以用中點公式將M的坐標(x,y)用點Q的坐標表示出來。 x=(x0+2)/2 ② y=y0/2 ③ 顯然,用代入的方法,消去題中的x0、y0就可以求得所求軌跡。
數(shù)學(xué)思想方法與解題技巧是不同的,在證明或求解中,運用歸納、演繹、換元等方法解題問題可以說是解題的技術(shù)性問題,而數(shù)學(xué)思想是解題時帶有指導(dǎo)性的普遍思想方法。在解一道題時,從整體考慮,應(yīng)如何著手,有什么途徑?就是在數(shù)學(xué)思想方法的指導(dǎo)下的普遍性問題。
有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。只有在解題思想的指導(dǎo)下,靈活地運用具體的解題方法才能真正地學(xué)好數(shù)學(xué),僅僅掌握具體的操作方法,而沒有從解題思想的角度考慮問題,往往難于使數(shù)學(xué)學(xué)習(xí)進入更高的層次,會為今后進入大學(xué)深造帶來很有麻煩。
在具體的方法中,常用的有:觀察與實驗,聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。 要打贏一場戰(zhàn)役,不可能只是勇猛沖殺、一不怕死二不怕苦就可以打贏的,必須制訂好事關(guān)全局的戰(zhàn)術(shù)和策略問題。
解數(shù)學(xué)題時,也要注意解題思維策略問題,經(jīng)常要思考:選擇什么角度來進入,應(yīng)遵循什么原則性的東西。一般地,在解題中所采取的總體思路,是帶有原則性的思想方法,是一種宏觀的指導(dǎo),一般性的解決方案。
中學(xué)數(shù)學(xué)中經(jīng)常用到的數(shù)學(xué)思維策略有: 以簡馭繁、數(shù)形結(jié)全、進退互用、化生為熟、正難則反、倒順相還、動靜轉(zhuǎn)換、分合相輔 如果有了正確的數(shù)學(xué)思想方法,采取了恰當(dāng)?shù)臄?shù)學(xué)思維策略,又有了豐富的經(jīng)驗和扎實的基本功,一定可以學(xué)好高中數(shù)學(xué)。 四、學(xué)習(xí)方法的改進 身處應(yīng)試教育的怪圈,每個教師和學(xué)生都不由自主地陷入“題海”之中,教師拍心某種題型沒講,高考時做不出,學(xué)生怕少做一道題,萬一考了損失太慘重,在這樣一種氛圍中,往往忽視了學(xué)習(xí)方法的培養(yǎng),每個學(xué)生都有自己的方法,但什么樣的學(xué)習(xí)方法才是正確的方法呢?是不是一定要“博覽群題”才能提高水平呢? 現(xiàn)實告訴我們,大膽改進學(xué)習(xí)方法,這是一個非常重大的問題。
(一) 學(xué)會聽、讀 我們每天在學(xué)校里都在聽老師講課,閱讀課本或者資料,但我們聽和讀對不對呢? 讓我們從聽(聽講、課堂學(xué)習(xí))和讀(閱讀課本和相關(guān)資料)兩方面來談?wù)劙伞W(xué)生學(xué)習(xí)的知識,往往是間接的知識,是抽象化、形式化的知識,這些知識是在前人探索和實踐的基礎(chǔ)上提煉出來的,一般不包含探索和思維的過程。
因此必須聽好老師講課,集中注意力,積極思考問題。弄清講得內(nèi)容是什么?怎么分析?理由是什么?采用什么方法?還有什么疑問?只有這樣,才可能對教學(xué)內(nèi)容有所理解。
聽講的過程不是一個被動參預(yù)的過程,在聽講的前提下,還要展開來分析:這里用了什么思想方法,這樣做的目的是什么?為什么老師就能想到最簡捷的方法?這個題有沒有更直接的方法? “學(xué)而不思則罔,思而不學(xué)則殆”,在聽講的過程中一定要有積極的思考和參預(yù),這樣才能達到最高的學(xué)習(xí)效率。 閱讀數(shù)學(xué)教材也是掌握數(shù)學(xué)知識的非常重要的方法。
只有真正閱讀和數(shù)學(xué)教材,才能較好地掌握數(shù)學(xué)語言,提高自學(xué)能力。一定要改變只做題不看書,把課本當(dāng)成查公式的辭典的不良傾向。
閱讀課本,也要爭取老師的指導(dǎo)。閱讀當(dāng)天的內(nèi)容或一個單元一章的內(nèi)容,都要通盤考慮,要有目標。
比如,學(xué)習(xí)反正弦函數(shù),從知識上來講,通過閱讀,應(yīng)弄請以下幾個問題: (1)是不是每個函數(shù)都有反函數(shù),如果不是,在什么情況下函數(shù)有反函數(shù)? (2)正弦函數(shù)在什么情況下有反函數(shù)?若有,其反函數(shù)如何表示? (3)正弦函數(shù)的圖象與反正弦函數(shù)的圖象是什么關(guān)系? (4)反正弦函數(shù)有什么性質(zhì)? (5)如何求反正弦函數(shù)的值? (二)學(xué)會思考 愛因斯坦曾說:“發(fā)展獨立思考和獨立判斷的一般能力應(yīng)當(dāng)始終放在首位”,勤于思考,善于思考,是。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請在一個月內(nèi)通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁面生成時間:3.338秒