〖圓的定義〗 幾何說:平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
定點稱為圓心,定長稱為半徑。 軌跡說:平面上一動點以一定點為中心,一定長為距離運動一周的軌跡稱為圓周,簡稱圓。
集合說:到定點的距離等于定長的點的集合叫做圓。 〖圓的相關(guān)量〗 圓周率:圓周長度與圓的直徑長度的比叫做圓周率,值是3.14159265358979323846…,通常用π表示,計算中常取3.1416為它的近似值。
圓弧和弦:圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優(yōu)弧,小于半圓的弧稱為劣弧。
連接圓上任意兩點的線段叫做弦。經(jīng)過圓心的弦叫做直徑。
圓心角和圓周角:頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。
內(nèi)心和外心:過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓心稱為內(nèi)心。
扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。圓錐側(cè)面展開圖是一個扇形。
這個扇形的半徑成為圓錐的母線。 〖圓和圓的相關(guān)量字母表示方法〗 圓—⊙ 半徑—r 弧—⌒ 直徑—d 扇形弧長/圓錐母線—l 周長—C 面積—S 〖圓和其他圖形的位置關(guān)系〗 圓和點的位置關(guān)系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO直線與圓有3種位置關(guān)系:無公共點為相離;有兩個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。
以直線AB與圓O為例(設OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO兩圓之間有5種位置關(guān)系:無公共點的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r【圓的平面幾何性質(zhì)和定理】 〖有關(guān)圓的基本性質(zhì)與定理〗 圓的確定:不在同一直線上的三個點確定一個圓。 圓的對稱性質(zhì):圓是軸對稱圖形,其對稱軸是任意一條過圓心的直線。
圓也是中心對稱圖形,其對稱中心是圓心。 垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。
逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。 〖有關(guān)圓周角和圓心角的性質(zhì)和定理〗 在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩條弧,兩條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。
一條弧所對的圓周角等于它所對的圓心角的一半。 直徑所對的圓周角是直角。
90度的圓周角所對的弦是直徑。 〖有關(guān)外接圓和內(nèi)切圓的性質(zhì)和定理〗 一個三角形有唯一確定的外接圓和內(nèi)切圓。
外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;內(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點,到三角形三邊距離相等。 〖有關(guān)切線的性質(zhì)和定理〗 圓的切線垂直于過切點的直徑;經(jīng)過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。
切線判定定理:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。 切線的性質(zhì):(1)經(jīng)過切點垂直于這條半徑的直線是圓的切線。
(2)經(jīng)過切點垂直于切線的直線必經(jīng)過圓心。(3)圓的切線垂直于經(jīng)過切點的半徑。
切線的長定理:從圓外一點到圓的兩條切線的長相等。 〖有關(guān)圓的計算公式〗 1.圓的周長C=2πr=πd 2.圓的面積S=πr2 3.扇形弧長l=nπr/180 4.扇形面積S=nπr2/360=rl/2 5.圓錐側(cè)面積S=πrl 【圓的解析幾何性質(zhì)和定理】 〖圓的解析幾何方程〗 圓的標準方程:在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是(x-a)^2+(y-b)^2=r^2。
圓的一般方程:把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是x^2+y^2+Dx+Ey+F=0。和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2。
圓的離心率e=0,在圓上任意一點的曲率半徑都是r。 〖圓與直線的位置關(guān)系判斷〗 平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是: 1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的一元二次方程f(x)=0。
利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下: 如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。 如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。 2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。
令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1<x2,那么: 當x=-C/Ax2時,直線與圓相離; 當x1<x=-C/A<x2時,直線與圓相交; 半徑r,直徑d 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑 余弦定理 b^2=a^2+c^2-2accosB 注:角B是邊a和邊c的夾角 圓的標準方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圓心。
【圓的解析幾何性質(zhì)和定理】
〖圓的解析幾何方程〗
圓的標準方程:在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是(x-a)^2+(y-b)^2=r^2。
圓的一般方程:把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是x^2+y^2+Dx+Ey+F=0(其中D^2+E^2-4F>0)。其中和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2-r^2。該圓圓心坐標為(-D/2,-E/2),半徑r=0.5√D^2+E^2-4F。
圓的離心率e=0,在圓上任意一點的曲率半徑都是r。
進過圓 x^2+y^2=r^2上一點M(a0,b0)的切線方程為 a0*x+b0*y=r^2
〖圓與直線的位置關(guān)系判斷〗
平面內(nèi),直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關(guān)系判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關(guān)于x的一元二次方程f(x)=0。利用判別式b^2-4ac的符號可確定圓與直線的位置關(guān)系如下:
如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。
如果b^2-4ac2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行于y軸(或垂直于x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,并且規(guī)定x1當x=-C/Ax2時,直線與圓相離;
當x1半徑r,直徑d
在直角坐標系中,圓的解析式為:(x-a)^2+(y-b)^2=r^2
x^2+y^2+Dx+Ey+F=0
=>(x+D/2)^2+(y+E/2)^2=D^2/4+E^2/4-F
=>圓心坐標為(-D/2,-E/2)
其實只要保證X方Y(jié)方前系數(shù)都是1
就可以直接判斷出圓心坐標為(-D/2,-E/2)
這可以作為一個結(jié)論運用的
且r=根號(圓心坐標的平方和-F)
[編輯本段]圓知識點總結(jié)
平面上到定點的距離等于定長的所有點組成的圖形叫做圓。
圓心:圓中心固定的一點叫做圓心。用字母o或⊙表示
直徑:通過圓心,并且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
半徑:連接圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數(shù)條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=二分之d
圓的半徑或直徑?jīng)Q定圓的大小,圓心決定圓的位置。
圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。
圓的周長與直徑的比值叫做圓周率。
圓的周長除以直徑的商是一個固定的數(shù),把它叫做圓周率,它是一個無限不循環(huán)小數(shù),用字母π表示。計算時,通常取它的近似值,π≈3.14。
直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
去百度文庫,查看完整內(nèi)容>
內(nèi)容來自用戶:李氏香甜玉米
高一數(shù)學期中復習之一——圓
一.基本知識之關(guān)于圓的方程
1.圓心為,半徑為的圓的標準方程為:.特殊地,
當時,圓心在原點的圓的方程為:.
2.圓的一般方程,其中.
圓心為點,半徑,
3.二元二次方程,表示圓的方程的充要條件是:
①項項的系數(shù)相同且不為,即;②沒有項,即;③.
4.圓:的參數(shù)方程為(為參數(shù)).
特殊地,的參數(shù)方程為(為參數(shù)).
5.圓系方程:過圓:與圓:交點的圓系方程是(不含圓),
當時圓系方程變?yōu)閮蓤A公共弦所在直線方程.
二.基本知識之關(guān)于直線與圓的位置關(guān)系
位置關(guān)系|相切|相交|相離|
幾何特征|代數(shù)特征|
將直線方程代入圓的方程得到一元二次方程,設它的判別式為,圓的半徑為,圓心到直線的距離為,則直線與圓的位置關(guān)系滿足以下關(guān)系:
直線截圓所得弦長的計算方法:
①利用弦長計算公式:設直線與圓相交于,兩點,
則弦;
②利用垂徑定理和勾股定理:(其中為圓的半徑,直線到圓心的距離).
3.圓與圓的位置關(guān)系:設兩圓的半徑分別為和,圓心距為,則兩圓的位置關(guān)系滿足以下關(guān)系:
位置關(guān)系|外離|外切|相交|內(nèi)切|內(nèi)含|
幾何特征|代數(shù)特征|無實數(shù)解|一組實數(shù)解|兩組實數(shù)解|一組實數(shù)解|無實數(shù)解|
三.分類例題練習解:(
4、弓形面積1) S弓形=S扇形-SΔOAB 2) S弓形=S扇形+SΔOAB 二、圓錐的側(cè)面積和全面積1 把矩形ABCD繞直線AB旋轉(zhuǎn)一周得到的圖形叫做圓柱.旋轉(zhuǎn)軸直線AB叫做它的軸. 2 在軸AB上的矩形的邊AB的長度叫做它的高.平行于軸的邊DC旋轉(zhuǎn)而成的曲面叫做它的側(cè)面,無論旋轉(zhuǎn)到什么位置,這條邊都叫做圓柱的母線. 3 垂直于軸的邊AD,BC旋轉(zhuǎn)而成的圓面叫做它的底面 4、圓錐是由一個底面和一個側(cè)面圍成的,我們把圓錐 底面圓周上任意一點與圓錐頂點的連線叫做圓錐 的母線.連結(jié)頂點與底面圓心的線段叫做圓錐的高. 沿著圓錐的母線,把一個圓錐的側(cè)面展開,得到一個扇形,這個扇形的弧長等于圓錐底面的周長,而扇形的半徑等于圓錐的母線的長. 圓錐的側(cè)面積就是弧長為圓錐底面的周長、半徑為圓錐的一條母線的長的扇形面積,而圓錐的全面積就是它的側(cè)面積與它的底面積的和. 5.設底面半徑為r,母線長為l,則 S側(cè)= l·2πr=πrl S全=πrl+πr 數(shù)量關(guān)系:外離:d>R+r四條公切線 外切:d=R+r三條公切線 相交:R-r內(nèi)切:d=R-r一條公切線 內(nèi)含:d6、兩圓相交的性質(zhì)定理:相交兩圓的連心線垂直平分兩圓的公共弦. 7、公切線的性質(zhì) (1)如果兩圓有兩條外公切線,那么這兩條外公切線長相等;如果兩圓有兩條內(nèi)公切線,那么這兩條內(nèi)公切線長相等. (2)如果兩圓有兩條外(內(nèi))公切線,并且相交,那么交點一定在兩圓的連心線上,并且連心線平分這兩條公切線的夾角. 8、相交弦定理及其推論定理:圓內(nèi)的兩條相交弦,被交點分成的兩條線段長的 積相等(PA·PB=PC·PD). 推論:如果弦與直徑垂直相交,那么弦的一半是它分直 徑所成的兩條線段的比例中項(PC2=PD2=PA·PB). 9、切割線定理及推論定理:從圓外一點引圓的切線和割線,切線長 是這點到割線與圓交點的兩條線段長的比例 中項(PA2=PB·PC或PA2=PD·PE). 推論:從圓外一點引圓的兩條割線,這一點到兩條割 線與圓的交點的兩條線段長的積相等 (PB·PC=PD·PE).圓的有關(guān)性質(zhì) 一,〖知識點〗圓、圓的對稱性、點和圓的位置關(guān)系、不在同一直線上的三點確定一個圓、三角形的外接圓、垂徑定理逆定理、圓心角、弧、弦、弦心距之間的關(guān)系、圓周角定理、圓內(nèi)接四邊形的性質(zhì) 〖大綱要求〗 1. 正確理解和應用圓的點集定義,掌握點和圓的位置關(guān)系; 2. 熟練地掌握確定一個圓的條件,即圓心、半徑;直徑;不在同一直線上三點。
一個 圓的圓心只確定圓的位置,而半徑也只能確定圓的大小,兩個條件確定一條直線,三個條件確定一個圓,過三角形的三個頂點的圓存在并且唯一; 3. 熟練地掌握和靈活應用圓的有關(guān)性質(zhì):同(等)圓中半徑相等、直徑相等直徑是半 徑的2倍;直徑是最大的弦;圓是軸對稱圖形,經(jīng)過圓心的任一條直線都是對稱軸;圓是中心對稱圖形,圓心是對稱中心;圓具有旋轉(zhuǎn)不變性;垂徑定理及其推論;圓心角、圓周角、弧、弦、弦心距之間的關(guān)系; 4. 掌握和圓有關(guān)的角:圓心角、圓周角的定義及其度量;圓心角等于同(等)弧上的 圓周角的2倍;同(等)弧上的圓周角相等;直徑(半圓)上的圓周角是直角;90°的圓周角所對的弦是直徑; 5. 掌握圓內(nèi)接四邊形的性質(zhì)定理:它溝通了圓內(nèi)外圖形的關(guān)系,并能應用它解決有關(guān) 問題; 6. 注意:(1)垂徑定理及其推論是指:一條弦①在“過圓心”②“垂直于另一條弦” ③“平分這另一條弦”④“平分這另一條弦所對的劣弧”⑤“ 平分這另一條弦所對的優(yōu)弧”的五個條件中任意具有兩個條件,則必具有另外三個結(jié)論(當①③為條件時要對另一條弦增加它不是直徑的限制),條理性的記憶,不但簡化了對它實際代表的10條定理的記憶且便于解題時的靈活應用,垂徑定理提供了證明線段相等、角相等、垂直關(guān)系等的重要依據(jù);(2)有弦可作弦心距組成垂徑定理圖形;見到直徑要想到它所對的圓周角是直角,想垂徑定理;想到過它的端點若有切線,則與它垂直,反之,若有垂線則是切線,想到它被圓心所平分;(3)見到四個點在圓上想到有4組相等的同弧所對的圓周角,要想到應用圓內(nèi)接四邊形的性質(zhì)。 〖考查重點與常見題型〗 1. 判斷基本概念、基本定理等的正誤,在中考題中常以選擇題、填空題的形式考查學 生對基本概念和基本定理的正確理解,如:下列語句中,正確的有( ) (A)相等的圓心角所對的弧相等 (B)平分弦的直徑垂直于弦 (C)長度相等的兩條弧是等弧 (D)弦過圓心的每一條直線都是圓的對稱軸 2. 論證線段相等、三角形相似、角相等、弧相等及線段的倍分等。
此種結(jié)論的證明重 點考查了全等三角形和相似三角形判定,垂徑定理及其推論、圓周角、圓心角的性質(zhì)及切線的性質(zhì),弦切角等有關(guān)圓的基礎知識,常以解答題形式出現(xiàn)。 二,〖知識點〗 相交弦定理、切割線定理及其推論 〖大綱要求〗 1. 正誤相交弦定理、切割線定理及其推論; 2. 了解圓冪定理的內(nèi)在聯(lián)系; 3. 熟練地應用定理解決有關(guān)問題; 4. 注意(1)相交弦定理、切割線定理及其推論統(tǒng)稱為圓冪定理,圓冪定理是圓和相似 三角形結(jié)合的產(chǎn)物。
這幾個定理可統(tǒng)一記憶成一個定理:過圓內(nèi)或圓外一點作圓的兩條割線,則這兩條割線被圓截出的兩弦。
、圓的方程
(1)標準方程,圓心,半徑為r;
(2)一般方程
當時,方程表示圓,此時圓心為,半徑為
當時,表示一個點; 當時,方程不表示任何圖形。
(3)求圓方程的方法:
一般都采用待定系數(shù)法:先設后求。確定一個圓需要三個獨立條件,若利用圓的標準方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。
3、直線與圓的位置關(guān)系:
直線與圓的位置關(guān)系有相離,相切,相交三種情況:
(1)設直線,圓,圓心到l的距離為,則有;;
(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】
(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)= r2
4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
設圓,
兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。
當時兩圓外離,此時有公切線四條;
當時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;
當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;
當時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;
當時,兩圓內(nèi)含; 當時,為同心圓。
注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線
(一)圓的標準方程 1. 圓的定義:平面內(nèi)到一定點的距離等于定長的點的軌跡叫做圓。
定點叫圓的圓心,定長叫做圓的半徑。 2. 圓的標準方程:已知圓心為(a,b),半徑為r,則圓的方程為(x-a)2+(y-b)2=r2。
說明: (1)上式稱為圓的標準方程。 (2)如果圓心在坐標原點,這時a=0,b=0,圓的方程就是x2+y2=r2。
(3)圓的標準方程顯示了圓心為(a,b),半徑為r這一幾何性質(zhì),即(x-a)2+(y-b)2=r2----圓心為(a,b),半徑為r。 (4)確定圓的條件 由圓的標準方程知有三個參數(shù)a、b、r,只要求出a、b、r,這時圓的方程就被確定.因此,確定圓的方程,需三個獨立的條件,其中圓心是圓的定位條件,半徑是圓的定型條件。
(5)點與圓的位置關(guān)系的判定 若點M(x1,y1)在圓外,則點到圓心的距離大于圓的半徑,即(x-a)2+(y-b)2>r2 ; 若點M(x1,y1)在圓內(nèi),則點到圓心的距離小于圓的半徑,即(x-a)2+(y-b)2 ;(二)圓的一般方程 任何一個圓的方程都可以寫成下面的形式: x2+y2+Dx+Ey+F=0① 將①配方得: ②(x+D/2)2+(y+E/2)2=D2+E2-4F/4 當時,方程①表示以(-D/2,-E/2)為圓心,以為半徑的圓; 當時,方程①只有實數(shù)解,所以表示一個點(-D/2,-E/2); 當時,方程①沒有實數(shù)解,因此它不表示任何圖形。 故當時,方程①表示一個圓,方程①叫做圓的一般方程。
圓的標準方程的優(yōu)點在于它明確地指出了圓心和半徑,而一般方程突出了方程形式上的特點: (1)和的系數(shù)相同,且不等于0; (2)沒有xy這樣的二次項。 以上兩點是二元二次方程表示圓的必要條件,但不是充分條件。
要求出圓的一般方程,只要求出三個系數(shù)D、E、F就可以了。(三)直線和圓的位置關(guān)系 1. 直線與圓的位置關(guān)系 研究直線與圓的位置關(guān)系有兩種方法: (l)幾何法:令圓心到直線的距離為d,圓的半徑為r。
d>r直線與圓相離;d=r直線與圓相切;0≤d<r直線與圓相交。 (2)代數(shù)法:聯(lián)立直線方程與圓的方程組成方程組,消元后得到一元二次方程,其判別式為Δ。
△0直線與圓相交。 說明:幾何法研究直線與圓的關(guān)系是常用的方法,一般不用代數(shù)法。
2. 圓的切線方程 (1)過圓x2+y2=r2上一點P(x0,y0)的切線方程是x0x+y0y=r2 (2)過圓(x-a)2+(y-b)2=r2上一點P(x0,y0)的切線方程是(x0-a)(x-a)+(y0-b)(y-b)=r2 ; (3)過圓 x2+y2+Dx+Ey+F=0(D2+E2-4F>0)上一點P(x0,y0)的切線方程是x0x+y0y+D·(x0+x)/2+E·(y0+y)/2+F=0 3. 直線與圓的位置關(guān)系中的三個基本問題 (1)判定位置關(guān)系。方法是比較d與r的大小。
(2)求切線方程。若已知切點M(x0,y0),則切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2 ; 若已知切線上一點N(x0,y0),則可設切線方程為y-y0=k(x-x0),然后利用d=r求k,但需注意k不存在的情況。
(3)關(guān)于弦長:一般利用勾股定理與垂徑定理,很少利用弦長公式,因其計算較繁,另外,當直線與圓相交時,過兩交點的圓系方程為 x2+y2+Dx+Ey+F+λ(Ax+By+C)=0 (四)圓與圓的位置關(guān)系 1. 圓與圓的位置關(guān)系問題 判定兩圓的位置關(guān)系的方法有二:第一種是代數(shù)法,研究兩圓的方程所組成的方程組的解的個數(shù);第二種是研究兩圓的圓心距與兩圓半徑之間的關(guān)系。第一種方法因涉及兩個二元二次方程組成的方程組,其解法一般較繁瑣,故使用較少,通常使用第二種方法,具體如下: 圓(x-a1)2+(y-b1)2=r12與圓(x-a2)2+(y-b2)2=r22的位置關(guān)系,其中r1>0,r2>0 設兩圓的圓心距為d,則d=根號下(a1-a2)2+(b1-b2)2 當d>r1+r2時,兩圓外離; 當d=r1+r2時,兩圓外切; 當|r1-r2| 當d=|r1+r2|時,兩圓內(nèi)切; 當0 兩圓位置關(guān)系的問題同直線與圓的位置關(guān)系的問題一樣,一般要轉(zhuǎn)化為距離間題來解決。
另外,我們在解決有關(guān)圓的問題時,應特別注意,圓的平面幾何性質(zhì)的應用。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡傳播權(quán)保護條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請在一個月內(nèi)通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學習鳥. 頁面生成時間:2.990秒