去百度文庫(kù),查看完整內(nèi)容>
內(nèi)容來(lái)自用戶:天使小白很黑
第1章相關(guān)知識(shí)
1.1圖像分割的概述
在對(duì)圖像的研究和應(yīng)用中,人們往往僅對(duì)圖像中的某些部分感興趣,這些部分稱為目標(biāo)或前景(其他部分稱為背景>;,他們一般對(duì)應(yīng)圖像中特定的、具有獨(dú)特性質(zhì)的區(qū)域。為了辨識(shí)和分析目標(biāo),需要將他們分離提取出來(lái),在此基礎(chǔ)上才有可能對(duì)目標(biāo)進(jìn)一步利用。圖像分割就是指把圖像分成格局特性的區(qū)域并提取出感興趣目標(biāo)的技術(shù)和過(guò)程。這里特性可以是象素的灰度、顏色、紋理等,預(yù)先定義的目標(biāo)可以對(duì)應(yīng)單個(gè)區(qū)域,也可以對(duì)應(yīng)多個(gè)區(qū)域。現(xiàn)有的圖像分割算法有:閾值分割、邊緣檢測(cè)和區(qū)域提取法。本文著重研究基于閾值法的圖像分割技術(shù)。
所謂圖像分割是指根據(jù)灰度、彩色、空間紋理、幾何形狀等特征把圖像劃分成若干個(gè)互不相交的區(qū)域,使得這些特征在同一區(qū)域內(nèi),表現(xiàn)出一致性或相似性,而在不同區(qū)域間表現(xiàn)出明顯的不同。簡(jiǎn)單的講,就是在一幅圖像中,把目標(biāo)從背景中分離出來(lái),以便于進(jìn)一步處理。圖像分割是圖像處理與計(jì)算機(jī)視覺領(lǐng)域低層次視覺中最為基礎(chǔ)和重要的領(lǐng)域之一,它是對(duì)圖像進(jìn)行視覺分析和模式識(shí)別的基本前提。同時(shí)它也是一個(gè)經(jīng)典難題,到目前為止既不存在一種通用的圖像分割方法,也不存在一種判斷是否分割成功的客觀標(biāo)準(zhǔn)。
閾值法是一種傳統(tǒng)的圖像分割方法,因其實(shí)現(xiàn)簡(jiǎn)單、計(jì)算量小、性能較穩(wěn)定而成為圖像分割中最基本和應(yīng)用最廣泛的分割技術(shù)。已被應(yīng)用于很多的領(lǐng)域,例如,在紅外技術(shù)應(yīng)用中,紅外無(wú)損檢測(cè)中紅外熱圖像的分割,紅外成像跟蹤系統(tǒng)中目
主要是三類1) 基于點(diǎn)的全局閾值方法;2) 基于區(qū)域的全局閾值方法3) 局部閾值方法和多閾值方法1)基于點(diǎn)的全局閾值方法p-分位數(shù)法1962年Doyle提出的p-分位數(shù)法是最古老的一種閾值選取方法迭代方法選取閾值初始閾值選取為圖像的平均灰度T0,然后用T0將圖像的象素點(diǎn)分作兩部分,計(jì)算兩部分各自的平均灰度,小于T0的部分為TA,大于T0的部分為TB,將T1 作為新的全局閾值代替T0,重復(fù)以上過(guò)程,如此迭代,直至TK 收斂直方圖凹面分析法最大類間方差法熵方法最小誤差閾值矩量保持法模糊集方法2) 基于區(qū)域的全局閾值方法二維熵閾值分割方法簡(jiǎn)單統(tǒng)計(jì)法直方圖變化法松弛法3) 局部閾值方法和多閾值方法局部閾值(動(dòng)態(tài)閾值)閾值插值法水線閾值算法多閾值法 基于小波的多域值方法 基于邊界點(diǎn)的遞歸多域值方法 均衡對(duì)比度遞歸多域值方法。
灰度閾值分割 法是一種最常用的并行區(qū)域技術(shù),它是圖像分割中應(yīng)用數(shù)量最多的一類。
閾值分割方法實(shí)際上是輸入圖像f到輸出圖像g的如下變換:其中,T為閾值,對(duì)于物體的圖像元素g(i,j)=1,對(duì)于背景的圖像元素g(i,j)=0。由此可見,閾值分割算法的關(guān)鍵是確定閾值,如果能確定一個(gè)合適的閾值就可準(zhǔn)確地將圖像分割開來(lái)。
閾值確定后,將閾值與像素點(diǎn)的灰度值逐個(gè)進(jìn)行比較,而且像素分割可對(duì)各像素并行地進(jìn)行,分割的結(jié)果直接給出圖像區(qū)域。閾值分割的優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單、運(yùn)算效率較高、速度快。
在重視運(yùn)算效率的應(yīng)用場(chǎng)合(如用于硬件實(shí)現(xiàn)),它得到了廣泛應(yīng)用。人們發(fā)展了各種各樣的閾值處理技術(shù),包括全局閾值、自適應(yīng)閾值、最佳閾值等等。
全局閾值是指整幅圖像使用同一個(gè)閾值做分割處理,適用于背景和前景有明顯對(duì)比的圖像。它是根據(jù)整幅圖像確定的:T=T(f)。
但是這種方法只考慮像素本身的灰度值,一般不考慮空間特征,因而對(duì)噪聲很敏感。常用的全局閾值選取方法有利用圖像灰度直方圖的峰谷法、最小誤差法、最大類間方差法、最大熵自動(dòng)閾值法以及其它一些方法。
在許多情況下,物體和背景的對(duì)比度在圖像中的各處不是一樣的,這時(shí)很難用一個(gè)統(tǒng)一的閾值將物體與背景分開。這時(shí)可以根據(jù)圖像的局部特征分別采用不同的閾值進(jìn)行分割。
實(shí)際處理時(shí),需要按照具體問(wèn)題將圖像分成若干子區(qū)域分別選擇閾值,或者動(dòng)態(tài)地根據(jù)一定的鄰域范圍選擇每點(diǎn)處的閾值,進(jìn)行圖像分割。這時(shí)的閾值為自適應(yīng)閾值。
閾值的選擇需要根據(jù)具體問(wèn)題來(lái)確定,一般通過(guò)實(shí)驗(yàn)來(lái)確定。對(duì)于給定的圖像,可以通過(guò)分析直方圖的方法確定最佳的閾值,例如當(dāng)直方圖明顯呈現(xiàn)雙峰情況時(shí),可以選擇兩個(gè)峰值的中點(diǎn)作為最佳閾值。
圖1(a)和(b)分別為用全局閾值和自適應(yīng)閾值對(duì)經(jīng)典的Lena圖像進(jìn)行分割的結(jié)果。 區(qū)域生長(zhǎng)和分裂合并法是兩種典型的串行區(qū)域技術(shù),其分割過(guò)程后續(xù)步驟的處理要根據(jù)前面步驟的結(jié)果進(jìn)行判斷而確定。
區(qū)域生長(zhǎng) 區(qū)域生長(zhǎng)的基本思想是將具有相似性質(zhì)的像素集合起來(lái)構(gòu)成區(qū)域。具體先對(duì)每個(gè)需要分割的區(qū)域找一個(gè)種子像素作為生長(zhǎng)的起點(diǎn),然后將種子像素周圍鄰域中與種子像素有相同或相似性質(zhì)的像素(根據(jù)某種事先確定的生長(zhǎng)或相似準(zhǔn)則來(lái)判定)合并到種子像素所在的區(qū)域中。
將這些新像素當(dāng)作新的種子像素繼續(xù)進(jìn)行上面的過(guò)程,直到再?zèng)]有滿足條件的像素可被包括進(jìn)來(lái)。這樣一個(gè)區(qū)域就長(zhǎng)成了。
區(qū)域生長(zhǎng)需要選擇一組能正確代表所需區(qū)域的種子像素,確定在生長(zhǎng)過(guò)程中的相似性準(zhǔn)則,制定讓生長(zhǎng)停止的條件或準(zhǔn)則。相似性準(zhǔn)則可以是灰度級(jí)、彩色、紋理、梯度等特性。
選取的種子像素可以是單個(gè)像素,也可以是包含若干個(gè)像素的小區(qū)域。大部分區(qū)域生長(zhǎng)準(zhǔn)則使用圖像的局部性質(zhì)。
生長(zhǎng)準(zhǔn)則可根據(jù)不同原則制定,而使用不同的生長(zhǎng)準(zhǔn)則會(huì)影響區(qū)域生長(zhǎng)的過(guò)程。區(qū)域生長(zhǎng)法的優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,對(duì)于較均勻的連通目標(biāo)有較好的分割效果。
它的缺點(diǎn)是需要人為確定種子點(diǎn),對(duì)噪聲敏感,可能導(dǎo)致區(qū)域內(nèi)有空洞。另外,它是一種串行算法,當(dāng)目標(biāo)較大時(shí),分割速度較慢,因此在設(shè)計(jì)算法時(shí),要盡量提高效率。
區(qū)域分裂合并 區(qū)域生長(zhǎng)是從某個(gè)或者某些像素點(diǎn)出發(fā),最后得到整個(gè)區(qū)域,進(jìn)而實(shí)現(xiàn)目標(biāo)提取。分裂合并差不多是區(qū)域生長(zhǎng)的逆過(guò)程:從整個(gè)圖像出發(fā),不斷分裂得到各個(gè)子區(qū)域,然后再把前景區(qū)域合并,實(shí)現(xiàn)目標(biāo)提取。
分裂合并的假設(shè)是對(duì)于一幅圖像,前景區(qū)域由一些相互連通的像素組成的,因此,如果把一幅圖像分裂到像素級(jí),那么就可以判定該像素是否為前景像素。當(dāng)所有像素點(diǎn)或者子區(qū)域完成判斷以后,把前景區(qū)域或者像素合并就可得到前景目標(biāo)。
在這類方法中,最常用的方法是四叉樹分解法(如圖3所示)。設(shè)R代表整個(gè)正方形圖像區(qū)域,P代表邏輯謂詞。
基本分裂合并算法步驟如下:(1)對(duì)任一個(gè)區(qū)域,如果H(Ri)=FALSE就將其分裂成不重疊的四等份;(2)對(duì)相鄰的兩個(gè)區(qū)域Ri和Rj,它們也可以大小不同(即不在同一層),如果條件H(Ri∪Rj)=TRUE滿足,就將它們合并起來(lái)。(3)如果進(jìn)一步的分裂或合并都不可能,則結(jié)束。
分裂合并法的關(guān)鍵是分裂合并準(zhǔn)則的設(shè)計(jì)。這種方法對(duì)復(fù)雜圖像的分割效果較好,但算法較復(fù)雜,計(jì)算量大,分裂還可能破壞區(qū)域的邊界。
圖像分割的一種重要途徑是通過(guò)邊緣檢測(cè),即檢測(cè)灰度級(jí)或者結(jié)構(gòu)具有突變的地方,表明一個(gè)區(qū)域的終結(jié),也是另一個(gè)區(qū)域開始的地方。這種不連續(xù)性稱為邊緣。
不同的圖像灰度不同,邊界處一般有明顯的邊緣,利用此特征可以分割圖像。圖像中邊緣處像素的灰度值不連續(xù),這種不連續(xù)性可通過(guò)求導(dǎo)數(shù)來(lái)檢測(cè)到。
對(duì)于階躍狀邊緣,其位置對(duì)應(yīng)一階導(dǎo)數(shù)的極值點(diǎn),對(duì)應(yīng)二階導(dǎo)數(shù)的過(guò)零點(diǎn)(零交叉點(diǎn))。因此常用微分算子進(jìn)行邊緣檢測(cè)。
常用的一階微分算子有Roberts算子、Prewitt算子和Sobel算子,二階微分算子有Laplace算子和Kirsh算子等。在實(shí)際中各種微分算子常用小區(qū)域模板來(lái)表示,微分運(yùn)算是利用模板和圖像卷積來(lái)實(shí)現(xiàn)。
這些算子對(duì)噪聲敏感,只適合于噪聲較小不太復(fù)雜的圖像。由于邊緣和噪聲都是灰度不連續(xù)點(diǎn),在頻域均為高頻分量,直接采用微分運(yùn)算難以克服噪聲的影響。
摘要:圖像分割是進(jìn)行圖像分析的關(guān)鍵步驟,也是進(jìn)一步理解圖像的基礎(chǔ)。
該文主要論述了常用的幾種圖像閾值分割的算法及原理,并以研究瀝青混合料的集料特征為背景,從實(shí)驗(yàn)角度對(duì)圖像閾值分割的直方圖閾值法、迭代法和大津法進(jìn)行了分析比較,得出了結(jié)論。關(guān)鍵詞:圖像分割;直方圖閾值法;迭代法;大津法中圖分類號(hào):TP391 文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1009-3044(2011)13-3109-03Achieve and Comparison of Image Segmentation Thresholding MethodCHEN Ning-ning(Department of Technology, Xi'an International University, Xi'an 710077, China)Abstract: Image segmentation is a key step for image analysis, Is also the basis for further understanding of the image. In this paper, discusses several commonly used image segmentation algorithms and theory, and to study the aggregate asphalt mixture characteristics of the background, experimental results are shown to compare histogram threshold, Iteration method and the Otsu.Key words: image segmentation; histogram threshold; iteration method; Otsu1 概述圖像分割是進(jìn)行圖像分析的關(guān)鍵步驟,也是進(jìn)一步理解圖像的基礎(chǔ)。
常用方法有: 1) 以區(qū)域?yàn)閷?duì)象進(jìn)行分割,以相似性原則作為分割的依據(jù),即可根據(jù)圖像的灰度、色彩、變換關(guān)系等方面的特征相似來(lái)劃分圖像的子區(qū)域,并將各像素劃歸到相應(yīng)物體或區(qū)域的像素聚類方法,即區(qū)域法; 2) 以物體邊界為對(duì)象進(jìn)行分割,通過(guò)直接確定區(qū)域間的邊界來(lái)實(shí)現(xiàn)分割; 3) 先檢測(cè)邊緣像素,再將邊緣像素連接起來(lái)構(gòu)成邊界形成分割。
具體的閾值分割: 閾值分割方法分為以下3類: 1) 全局閾值:T=T[p(x,y)〕,即僅根據(jù)f(x,y)來(lái)選取閾值,閾值僅與各個(gè)圖像像素的本身性質(zhì)有關(guān)。 2) 局部閾值:T=T[f(x,y),p(x,y)],閾值與圖像像素的本身性質(zhì)和局部區(qū)域性質(zhì)相關(guān)。
3) 動(dòng)態(tài)閾值:T=T[x,y,f(x,y),p(x,y)],閾值與像素坐標(biāo),圖像像素的本身性質(zhì)和局部區(qū)域性質(zhì)相關(guān)。 全局閾值對(duì)整幅圖像僅設(shè)置一個(gè)分割閾值,通常在圖像不太復(fù)雜、灰度分布較集中的情況下采用;局部閾值則將圖像劃分為若干個(gè)子圖像,并對(duì)每個(gè)子圖像設(shè)定局部閾值;動(dòng)態(tài)閾值是根據(jù)空間信息和灰度信息確定。
局部閾值分割法雖然能改善分割效果,但存在幾個(gè)缺點(diǎn): 1) 每幅子圖像的尺寸不能太小,否則統(tǒng)計(jì)出的結(jié)果無(wú)意義。 2) 每幅圖像的分割是任意的,如果有一幅子圖像正好落在目標(biāo)區(qū)域或背景區(qū)域,而根據(jù)統(tǒng)計(jì)結(jié)果對(duì)其進(jìn)行分割,也許會(huì)產(chǎn)生更差的結(jié)果。
3) 局部閾值法對(duì)每一幅子圖像都要進(jìn)行統(tǒng)計(jì),速度慢,難以適應(yīng)實(shí)時(shí)性的要求。 全局閾值分割方法在圖像處理中應(yīng)用比較多,它在整幅圖像內(nèi)采用固定的閾值分割圖像。
考慮到全局閾值分割方法應(yīng)用的廣泛性,本文所著重討論的就是全局閾值分割方法中的直方圖雙峰法和基于遺傳算法的最大類間方差法。在本節(jié)中,將重點(diǎn)討論灰度直方圖雙峰法,最大類間方差法以及基于遺傳算法的最大類間方差法留待下章做繼續(xù)深入地討論。
圖像閾值化分割是一種傳統(tǒng)的最常用的圖像分割方法,因其實(shí)現(xiàn)簡(jiǎn)單、計(jì)算量小、性能較穩(wěn)定而成為圖像分割中最基本和應(yīng)用最廣泛的分割技術(shù)。它特別適用于目標(biāo)和背景占據(jù)不同灰度級(jí)范圍的圖像。它不僅可以極大的壓縮數(shù)據(jù)量,而且也大大簡(jiǎn)化了分析和處理步驟,因此在很多情況下,是進(jìn)行圖像分析、特征提取與模式識(shí)別之前的必要的圖像預(yù)處理過(guò)程。圖像閾值化的目的是要按照灰度級(jí),對(duì)像素集合進(jìn)行一個(gè)劃分,得到的每個(gè)子集形成一個(gè)與現(xiàn)實(shí)景物相對(duì)應(yīng)的區(qū)域,各個(gè)區(qū)域內(nèi)部具有一致的屬性,而相鄰區(qū)域不具有這種一致屬性。這樣的劃分可以通過(guò)從灰度級(jí)出發(fā)選取一個(gè)或多個(gè)閾值來(lái)實(shí)現(xiàn)。
基本原理是:通過(guò)設(shè)定不同的特征閾值,把圖像象素點(diǎn)分為若干類。
常用的特征包括:直接來(lái)自原始圖像的灰度或彩色特征;由原始灰度或彩色值變換得到的特征。
設(shè)原始圖像為f(x,y),按照一定的準(zhǔn)則f(x,y)中找到特征值T,將圖像分割為兩個(gè)部分,分割后的圖像為:
若?。篵0=0(黑),b1=1(白),即為我們通常所說(shuō)的圖像二值化。
聲明:本網(wǎng)站尊重并保護(hù)知識(shí)產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請(qǐng)?jiān)谝粋€(gè)月內(nèi)通知我們,我們會(huì)及時(shí)刪除。
蜀ICP備2020033479號(hào)-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁(yè)面生成時(shí)間:3.275秒