數(shù)據(jù)分析落實到實處,一般就是圍繞用戶漏斗展開的。也就是人們常說的訪問-激活-留存-交易-推薦。
這核心的5步會有不同維度的細分。
獲客:來源、渠道、關鍵字、著陸頁、地域、設備、訪問時間、跳出率、訪問深度、停留時間、新客量等等;
激活:DAU(日活躍用戶)、MAU(月活躍用戶)
留存:日留存率、周留存率、月留存率
交易:訂單量、訂單金額、LTV
推薦:是否傳播(k>1)
需要獲取以上數(shù)據(jù),可以通過ptengine通過漏斗細分得到可視化圖表。一般來講,同比(本周和上周)、環(huán)比(本月第一周和上月第一周)、定基比(所有數(shù)據(jù)和當年第一周)即可獲得數(shù)據(jù)的變化情況。
以上,其實不用很專業(yè)也能做好數(shù)據(jù)分析,獲取數(shù)據(jù)并不難,難的是你能洞察數(shù)據(jù)背后的意義。
常用方法:
利用數(shù)據(jù)挖掘進行數(shù)據(jù)分析常用的方法主要有分類、回歸分析、聚類、關聯(lián)規(guī)則、特征、變化和偏差分析、Web頁挖掘等, 它們分別從不同的角度對數(shù)據(jù)進行挖掘。
一、分類:
1.分類是找出數(shù)據(jù)庫中一組數(shù)據(jù)對象的共同特點并按照分類模式將其劃分為不同的類,其目的是通過分類模型,將數(shù)據(jù)庫中的數(shù)據(jù)項映射到某個給定的類別。
2.它可以應用到客戶的分類、客戶的屬性和特征分析、客戶滿意度分析、客戶的購買趨勢預測等,如一個汽車零售商將客戶按照對汽車的喜好劃分成不同的類,這樣營銷人員就可以將新型汽車的廣告手冊直接郵寄到有這種喜好的客戶手中,從而大大增加了商業(yè)機會。
②回歸分析:
1.回歸分析方法反映的是事務數(shù)據(jù)庫中屬性值在時間上的特征,產(chǎn)生一個將數(shù)據(jù)項映射到一個實值預測變量的函數(shù),發(fā)現(xiàn)變量或?qū)傩蚤g的依賴關系,其主要研究問題包括數(shù)據(jù)序列的趨勢特征、數(shù)據(jù)序列的預測以及數(shù)據(jù)間的相關關系等。
2.它可以應用到市場營銷的各個方面,如客戶尋求、保持和預防客戶流失活動、產(chǎn)品生命周期分析、銷售趨勢預測及有針對性的促銷活動等。
③聚類:聚類分析是把一組數(shù)據(jù)按照相似性和差異性分為幾個類別,其目的是使得屬于同一類別的數(shù)據(jù)間的相似性盡可能大,不同類別中的數(shù)據(jù)間的相似性盡可能小。它可以應用到客戶群體的分類、客戶背景分析、客戶購買趨勢預測、市場的細分等。
④關聯(lián)規(guī)則:
1.關聯(lián)規(guī)則是描述數(shù)據(jù)庫中數(shù)據(jù)項之間所存在的關系的規(guī)則,即根據(jù)一個事務中某些項的出現(xiàn)可導出另一些項在同一事務中也出現(xiàn),即隱藏在數(shù)據(jù)間的關聯(lián)或相互關系。
2.在客戶關系管理中,通過對企業(yè)的客戶數(shù)據(jù)庫里的大量數(shù)據(jù)進行挖掘,可以從大量的記錄中發(fā)現(xiàn)有趣的關聯(lián)關系,找出影響市場營銷效果的關鍵因素,為產(chǎn)品定位、定價與定制客戶群,客戶尋求、細分與保持,市場營銷與推銷,營銷風險評估和詐騙預測等決策支持提供參考依據(jù)。
總的分兩種:
1 列表法
將實驗數(shù)據(jù)按一定規(guī)律用列表方式表達出來是記錄和處理實驗數(shù)據(jù)最常用的方法。表格的設計要求對應關系清楚、簡單明了、有利于發(fā)現(xiàn)相關量之間的物理關系;此外還要求在標題欄中注明物理量名稱、符號、數(shù)量級和單位等;根據(jù)需要還可以列出除原始數(shù)據(jù)以外的計算欄目和統(tǒng)計欄目等。最后還要求寫明表格名稱、主要測量儀器的型號、量程和準確度等級、有關環(huán)境條件參數(shù)如溫度、濕度等。
2 作圖法
作圖法可以最醒目地表達物理量間的變化關系。從圖線上還可以簡便求出實驗需要的某些結(jié)果(如直線的斜率和截距值等),讀出沒有進行觀測的對應點(內(nèi)插法),或在一定條件下從圖線的延伸部分讀到測量范圍以外的對應點(外推法)。此外,還可以把某些復雜的函數(shù)關系,通過一定的變換用直線圖表示出來。例如半導體熱敏電阻的電阻與溫度關系為,取對數(shù)后得到,若用半對數(shù)坐標紙,以lgR為縱軸,以1/T為橫軸畫圖,則為一條直線。
數(shù)據(jù)分析的三個常用方法:
1. 數(shù)據(jù)趨勢分析
趨勢分析一般而言,適用于產(chǎn)品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數(shù)等。做出簡單的數(shù)據(jù)趨勢圖,并不算是趨勢分析,趨勢分析更多的是需要明確數(shù)據(jù)的變化,以及對變化原因進行分析。
趨勢分析,最好的產(chǎn)出是比值。在趨勢分析的時候需要明確幾個概念:環(huán)比,同比,定基比。環(huán)比是指,是本期統(tǒng)計數(shù)據(jù)與上期比較,例如2019年2月份與2019年1月份相比較,環(huán)比可以知道最近的變化趨勢,但是會有些季節(jié)性差異。為了消除季節(jié)差異,于是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數(shù)我2000萬,相比1月份,環(huán)比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對于趨勢線中明顯的拐點,發(fā)生了什么事情要給出合理的解釋,無論是外部原因還是內(nèi)部原因。
2. 數(shù)據(jù)對比分析
數(shù)據(jù)的趨勢變化獨立的看,其實很多情況下并不能說明問題,比如如果一個企業(yè)盈利增長10%,我們并無法判斷這個企業(yè)的好壞,如果這個企業(yè)所處行業(yè)的其他企業(yè)普遍為負增長,則5%很多,如果行業(yè)其他企業(yè)增長平均為50%,則這是一個很差的數(shù)據(jù)。
對比分析,就是給孤立的數(shù)據(jù)一個合理的參考系,否則孤立的數(shù)據(jù)毫無意義。在此我向大家推薦一個大數(shù)據(jù)技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數(shù)據(jù)是數(shù)據(jù)的基本面,比如行業(yè)的情況,全站的情況等。有的時候,在產(chǎn)品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變量,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質(zhì)量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數(shù)據(jù)。
3. 數(shù)據(jù)細分分析
在得到一些初步結(jié)論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數(shù)據(jù)細節(jié),而指標本身的變化,也需要分析變化產(chǎn)生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數(shù)據(jù)是否有變化。
分渠道 :不同來源的流量或者產(chǎn)品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區(qū) :不同地區(qū)的數(shù)據(jù)是否有變化。
組成拆分 :比如搜索由搜索詞組成,可以拆分不同搜索詞;店鋪流量由不用店鋪產(chǎn)生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什么,才是得到結(jié)論的關鍵,而一步一步拆分,就是在不斷問為什么的過程。
去百度文庫,查看完整內(nèi)容>
內(nèi)容來自用戶:蔣上樹
常用數(shù)據(jù)分析方法有那些
文章來源:ECP數(shù)據(jù)分析時間:2013/6/28 13:35:06發(fā)布者:常用數(shù)據(jù)分析(關注:554)
標簽:本文包括:
常用數(shù)據(jù)分析方法:聚類分析、因子分析、相關分析、對應分析、回歸分析、方差分析;
問卷調(diào)查常用數(shù)據(jù)分析方法:描述性統(tǒng)計分析、探索性因素分析、Cronbach'a信度系數(shù)分析、結(jié)構(gòu)方程模型分析(structural equations modeling)。
數(shù)據(jù)分析常用的圖表方法:柏拉圖(排列圖)、直方圖(Histogram)、散點圖(scatter diagram)、魚骨圖(Ishikawa)、FMEA、點圖、柱狀圖、雷達圖、趨勢圖。
數(shù)據(jù)分析統(tǒng)計工具:SPSS、minitab、JMP。
常用數(shù)據(jù)分析方法:
1、聚類分析(Cluster Analysis)
聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數(shù)據(jù)分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,人們不必事先給出一個分類的標準,聚類分析能夠從樣本數(shù)據(jù)出發(fā),自動進行分類。聚類分析所使用方法的不同,常常會得到不同的結(jié)論。不同研究者對于同一組數(shù)據(jù)進行聚類分析,所得到的聚類數(shù)未必一致。
2、因子分析(Factor Analysis)
因子分析是指研究從變量群中提取共性因子的統(tǒng)計技術。因子分析就是從大量的數(shù)據(jù)中尋找內(nèi)在的聯(lián)系,減少決策的困難。相關分析(直方圖JMP
借助工具,未至科技魔方是一款大數(shù)據(jù)模型平臺,是一款基于服務總線與分布式云計算兩大技術架構(gòu)的一款數(shù)據(jù)分析、挖掘的工具平臺,其采用分布式文件系統(tǒng)對數(shù)據(jù)進行存儲,支持海量數(shù)據(jù)的處理。
采用多種的數(shù)據(jù)采集技術,支持結(jié)構(gòu)化數(shù)據(jù)及非結(jié)構(gòu)化數(shù)據(jù)的采集。通過圖形化的模型搭建工具,支持流程化的模型配置。
通過第三方插件技術,很容易將其他工具及服務集成到平臺中去。數(shù)據(jù)分析研判平臺就是海量信息的采集,數(shù)據(jù)模型的搭建,數(shù)據(jù)的挖掘、分析最后形成知識服務于實戰(zhàn)、服務于決策的過程,平臺主要包括數(shù)據(jù)采集部分,模型配置部分,模型執(zhí)行部分及成果展示部分等。
本科論文常用分析方法有:定量分析與定性分析,定性分析與定量分析是人們認識事物時用到的兩種分析方式。
1、定量分析法
在科學研究中,通過定量分析法可以使人們對研究對象的認識進一步精確化,用數(shù)學語言進行描述。它是依據(jù)統(tǒng)計數(shù)據(jù),建立數(shù)學模型,并用數(shù)學模型針對數(shù)量特征、數(shù)量關系與數(shù)量變化去分析的一種方法。
2、定性分析法
定性分析法就是對研究對象進行“質(zhì)”的方面的分析。定性就是用文字語言進行相關描述。它是主要憑分析者的直覺、經(jīng)驗,運用主觀上的判斷來對分析對象的性質(zhì)、特點、發(fā)展變化規(guī)律進行分析的一種方法。
擴展資料:
定量分析法的具體方法:
1、比率分析法。它是財務分析的基本方法,也是定量分析的主要方法。
2、趨勢分析法。它對同一單位相關財務指標連續(xù)幾年的數(shù)據(jù)作縱向?qū)Ρ龋^察其成長性。通過趨勢分析,分析者可以了解該企業(yè)在特定方面的發(fā)展變化趨勢。
3、結(jié)構(gòu)分析法。它通過對企業(yè)財務指標中各分項目在總體項目中的比重或組成的分析,考量各分項目在總體項目中的地位。
4、數(shù)學模型法。在現(xiàn)代管理科學中,數(shù)學模型被廣泛應用,特別是在經(jīng)濟預測和管理工作中,由于不能進行實驗驗證,通常都是通過數(shù)學模型來分析和預測經(jīng)濟決策所可能產(chǎn)生的結(jié)果的。
參考資料來源:百度百科-定量分析法
您好朋友,上海獻峰科技指出:常用數(shù)據(jù)分析
1. 聚類分析、
2.因子分析、
3.相關分析、
4.對應分析、
5.回歸分析、
6.方差分析;
問卷調(diào)查常用數(shù)據(jù)分析方法:描述性統(tǒng)計分析、探索性因素分析、Cronbach'a信度系數(shù)分析、結(jié)構(gòu)方程模型分析(structural equations modeling) 。 數(shù)據(jù)分析常用的圖表方法:柏拉圖(排列圖)、直方圖(Histogram)、散點圖(scatter diagram)、魚骨圖(Ishikawa)、FMEA、點圖、柱狀圖、雷達圖、趨勢圖。
希 望 采納不足可追問
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權,根據(jù)《信息網(wǎng)絡傳播權保護條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權利,請在一個月內(nèi)通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學習鳥. 頁面生成時間:2.436秒