一、描述性統(tǒng)計(jì)
描述性統(tǒng)計(jì)是一類統(tǒng)計(jì)方法的匯總,揭示了數(shù)據(jù)分布特性。它主要包括數(shù)據(jù)的頻數(shù)分析、數(shù)據(jù)的集中趨勢(shì)分析、數(shù)據(jù)離散程度分析、數(shù)據(jù)的分布以及一些基本的統(tǒng)計(jì)圖形。
1、缺失值填充:常用方法有剔除法、均值法、決策樹法。
2、正態(tài)性檢驗(yàn):很多統(tǒng)計(jì)方法都要求數(shù)值服從或近似服從正態(tài)分布,所以在做數(shù)據(jù)分析之前需要進(jìn)行正態(tài)性檢驗(yàn)。常用方法:非參數(shù)檢驗(yàn)的K-量檢驗(yàn)、P-P圖、Q-Q圖、W檢驗(yàn)、動(dòng)差法。
二、回歸分析
回歸分析是應(yīng)用極其廣泛的數(shù)據(jù)分析方法之一。它基于觀測(cè)數(shù)據(jù)建立變量間適當(dāng)?shù)囊蕾囮P(guān)系,以分析數(shù)據(jù)內(nèi)在規(guī)律。
1. 一元線性分析
只有一個(gè)自變量X與因變量Y有關(guān),X與Y都必須是連續(xù)型變量,因變量Y或其殘差必須服從正態(tài)分布。
2. 多元線性回歸分析
使用條件:分析多個(gè)自變量X與因變量Y的關(guān)系,X與Y都必須是連續(xù)型變量,因變量Y或其殘差必須服從正態(tài)分布。
3.Logistic回歸分析
線性回歸模型要求因變量是連續(xù)的正態(tài)分布變量,且自變量和因變量呈線性關(guān)系,而Logistic回歸模型對(duì)因變量的分布沒有要求,一般用于因變量是離散時(shí)的情況。
4. 其他回歸方法:非線性回歸、有序回歸、Probit回歸、加權(quán)回歸等。
三、方差分析
使用條件:各樣本須是相互獨(dú)立的隨機(jī)樣本;各樣本來(lái)自正態(tài)分布總體;各總體方差相等。
1. 單因素方差分析:一項(xiàng)試驗(yàn)只有一個(gè)影響因素,或者存在多個(gè)影響因素時(shí),只分析一個(gè)因素與響應(yīng)變量的關(guān)系。
2. 多因素有交互方差分析:一頊實(shí)驗(yàn)有多個(gè)影響因素,分析多個(gè)影響因素與響應(yīng)變量的關(guān)系,同時(shí)考慮多個(gè)影響因素之間的關(guān)系
3. 多因素?zé)o交互方差分析:分析多個(gè)影響因素與響應(yīng)變量的關(guān)系,但是影響因素之間沒有影響關(guān)系或忽略影響關(guān)系
4. 協(xié)方差分祈:傳統(tǒng)的方差分析存在明顯的弊端,無(wú)法控制分析中存在的某些隨機(jī)因素,降低了分析結(jié)果的準(zhǔn)確度。協(xié)方差分析主要是在排除了協(xié)變量的影響后再對(duì)修正后的主效應(yīng)進(jìn)行方差分析,是將線性回歸與方差分析結(jié)合起來(lái)的一種分析方法。
四、假設(shè)檢驗(yàn)
1. 參數(shù)檢驗(yàn)
參數(shù)檢驗(yàn)是在已知總體分布的條件下(一股要求總體服從正態(tài)分布)對(duì)一些主要的參數(shù)(如均值、百分?jǐn)?shù)、方差、相關(guān)系數(shù)等)進(jìn)行的檢驗(yàn) 。
2. 非參數(shù)檢驗(yàn)
非參數(shù)檢驗(yàn)則不考慮總體分布是否已知,常常也不是針對(duì)總體參數(shù),而是針對(duì)總體的某些一般性假設(shè)(如總體分布的位罝是否相同,總體分布是否正態(tài))進(jìn)行檢驗(yàn)。
適用情況:順序類型的數(shù)據(jù)資料,這類數(shù)據(jù)的分布形態(tài)一般是未知的。
1)雖然是連續(xù)數(shù)據(jù),但總體分布形態(tài)未知或者非正態(tài);
2)總體分布雖然正態(tài),數(shù)據(jù)也是連續(xù)類型,但樣本容量極小,如10以下;
主要方法包括:卡方檢驗(yàn)、秩和檢驗(yàn)、二項(xiàng)檢驗(yàn)、游程檢驗(yàn)、K-量檢驗(yàn)等。
分析大數(shù)據(jù),R語(yǔ)言和Linux系統(tǒng)比較有幫助,運(yùn)用到的方法原理可以翻翻大學(xué)的統(tǒng)計(jì)學(xué),不需要完全理解,重在應(yīng)用。
分析簡(jiǎn)單數(shù)據(jù),Excel就可以了。Excel本意就是智能,功能很強(qiáng),容易上手。我沒有見過有人說(shuō)自己精通Excel的,最多是熟悉Excel。Excel的函數(shù)可以幫助你處理大部分?jǐn)?shù)據(jù)。
數(shù)據(jù)分析是指用適當(dāng)?shù)慕y(tǒng)計(jì)分析方法對(duì)收集來(lái)的大量數(shù)據(jù)進(jìn)行分析,提取有用信息和形成結(jié)論而對(duì)數(shù)據(jù)加以詳細(xì)研究和概括總結(jié)的過程。這一過程也是質(zhì)量管理體系的支持過程。在實(shí)用中,數(shù)據(jù)分析可幫助人們作出判斷,以便采取適當(dāng)行動(dòng)。
數(shù)據(jù)分析的數(shù)學(xué)基礎(chǔ)在20世紀(jì)早期就已確立,但直到計(jì)算機(jī)的出現(xiàn)才使得實(shí)際操作成為可能,并使得數(shù)據(jù)分析得以推廣。數(shù)據(jù)分析是數(shù)學(xué)與計(jì)算機(jī)科學(xué)相結(jié)合的產(chǎn)物。
“啤酒與尿布”的故事產(chǎn)生于20世紀(jì)90年代的美國(guó)沃爾瑪超市中,沃爾瑪?shù)某泄芾砣藛T分析銷售數(shù)據(jù)時(shí)發(fā)現(xiàn)了一個(gè)令人難于理解的現(xiàn)象:在某些特定的情況下,“啤酒”與“尿布”兩件看上去毫無(wú)關(guān)系的商品會(huì)經(jīng)常出現(xiàn)在同一個(gè)購(gòu)物籃中,這種獨(dú)特的銷售現(xiàn)象引起了管理人員的注意,經(jīng)過后續(xù)調(diào)查發(fā)現(xiàn),這種現(xiàn)象出現(xiàn)在年輕的父親身上。
在美國(guó)有嬰兒的家庭中,一般是母親在家中照看嬰兒,年輕的父親前去超市購(gòu)買尿布。父親在購(gòu)買尿布的同時(shí),往往會(huì)順便為自己購(gòu)買啤酒,這樣就會(huì)出現(xiàn)啤酒與尿布這兩件看上去不相干的商品經(jīng)常會(huì)出現(xiàn)在同一個(gè)購(gòu)物籃的現(xiàn)象。如果這個(gè)年輕的父親在賣場(chǎng)只能買到兩件商品之一,則他很有可能會(huì)放棄購(gòu)物而到另一家商店, 直到可以一次同時(shí)買到啤酒與尿布為止。沃爾瑪發(fā)現(xiàn)了這一獨(dú)特的現(xiàn)象,開始在賣場(chǎng)嘗試將啤酒與尿布擺放在相同的區(qū)域,讓年輕的父親可以同時(shí)找到這兩件商品,并很快地完成購(gòu)物;而沃爾瑪超市也可以讓這些客戶一次購(gòu)買兩件商品、而不是一件,從而獲得了很好的商品銷售收入,這就是“啤酒與尿布” 故事的由來(lái)。
當(dāng)然“啤酒與尿布”的故事必須具有技術(shù)方面的支持。1993年美國(guó)學(xué)者Agrawal提出通過分析購(gòu)物籃中的商品集合,從而找出商品之間關(guān)聯(lián)關(guān)系的關(guān)聯(lián)算法,并根據(jù)商品之間的關(guān)系,找出客戶的購(gòu)買行為。艾格拉沃從數(shù)學(xué)及計(jì)算機(jī)算法角度提 出了商品關(guān)聯(lián)關(guān)系的計(jì)算方法——Aprior算法。沃爾瑪從上個(gè)世紀(jì) 90 年代嘗試將 Aprior 算 法引入到 POS機(jī)數(shù)據(jù)分析中,并獲得了成功,于是產(chǎn)生了“啤酒與尿布”的故事。
借助工具,未至科技魔方是一款大數(shù)據(jù)模型平臺(tái),是一款基于服務(wù)總線與分布式云計(jì)算兩大技術(shù)架構(gòu)的一款數(shù)據(jù)分析、挖掘的工具平臺(tái),其采用分布式文件系統(tǒng)對(duì)數(shù)據(jù)進(jìn)行存儲(chǔ),支持海量數(shù)據(jù)的處理。
采用多種的數(shù)據(jù)采集技術(shù),支持結(jié)構(gòu)化數(shù)據(jù)及非結(jié)構(gòu)化數(shù)據(jù)的采集。通過圖形化的模型搭建工具,支持流程化的模型配置。
通過第三方插件技術(shù),很容易將其他工具及服務(wù)集成到平臺(tái)中去。數(shù)據(jù)分析研判平臺(tái)就是海量信息的采集,數(shù)據(jù)模型的搭建,數(shù)據(jù)的挖掘、分析最后形成知識(shí)服務(wù)于實(shí)戰(zhàn)、服務(wù)于決策的過程,平臺(tái)主要包括數(shù)據(jù)采集部分,模型配置部分,模型執(zhí)行部分及成果展示部分等。
一、掌握基礎(chǔ)、更新知識(shí)。
基本技術(shù)怎么強(qiáng)調(diào)都不過分。這里的術(shù)更多是(計(jì)算機(jī)、統(tǒng)計(jì)知識(shí)), 多年做數(shù)據(jù)分析、數(shù)據(jù)挖掘的經(jīng)歷來(lái)看、以及業(yè)界朋友的交流來(lái)看,這點(diǎn)大家深有感觸的。
數(shù)據(jù)庫(kù)查詢—SQL 數(shù)據(jù)分析師在計(jì)算機(jī)的層面的技能要求較低,主要是會(huì)SQL,因?yàn)檫@里解決一個(gè)數(shù)據(jù)提取的問題。有機(jī)會(huì)可以去逛逛一些專業(yè)的數(shù)據(jù)論壇,學(xué)習(xí)一些SQL技巧、新的函數(shù),對(duì)你工作效率的提高是很有幫助的。
統(tǒng)計(jì)知識(shí)與數(shù)據(jù)挖掘 你要掌握基礎(chǔ)的、成熟的數(shù)據(jù)建模方法、數(shù)據(jù)挖掘方法。例如:多元統(tǒng)計(jì):回歸分析、因子分析、離散等,數(shù)據(jù)挖掘中的:決策樹、聚類、關(guān)聯(lián)規(guī)則、神經(jīng)網(wǎng)絡(luò)等。
但是還是應(yīng)該關(guān)注一些博客、論壇中大家對(duì)于最新方法的介紹,或者是對(duì)老方法的新運(yùn)用,不斷更新自己知識(shí),才能跟上時(shí)代,也許你工作中根本不會(huì)用到,但是未來(lái)呢?行業(yè)知識(shí) 如果數(shù)據(jù)不結(jié)合具體的行業(yè)、業(yè)務(wù)知識(shí),數(shù)據(jù)就是一堆數(shù)字,不代表任何東西。是冷冰冰,是不會(huì)產(chǎn)生任何價(jià)值的,數(shù)據(jù)驅(qū)動(dòng)營(yíng)銷、提高科學(xué)決策一切都是空的。
一名數(shù)據(jù)分析師,一定要對(duì)所在行業(yè)知識(shí)、業(yè)務(wù)知識(shí)有深入的了解。例如:看到某個(gè)數(shù)據(jù),你首先必須要知道,這個(gè)數(shù)據(jù)的統(tǒng)計(jì)口徑是什么?是如何取出來(lái)的?這個(gè)數(shù)據(jù)在這個(gè)行業(yè), 在相應(yīng)的業(yè)務(wù)是在哪個(gè)環(huán)節(jié)是產(chǎn)生的?數(shù)值的代表業(yè)務(wù)發(fā)生了什么(背景是什么)?對(duì)于A部門來(lái)說(shuō),本月新會(huì)員有10萬(wàn),10萬(wàn)好還是不好呢?先問問上面的這個(gè)問題:對(duì)于A部門,1、新會(huì)員的統(tǒng)計(jì)口徑是什么。
第一次在使用A部門的產(chǎn)品的會(huì)員?還是在站在公司角度上說(shuō),第一次在公司發(fā)展業(yè)務(wù)接觸的會(huì)員?2、是如何統(tǒng)計(jì)出來(lái)的。A:時(shí)間;是通過創(chuàng)建時(shí)間,還是業(yè)務(wù)完成時(shí)間。
B:業(yè)務(wù)場(chǎng)景。是只要與業(yè)務(wù)發(fā)接觸,例如下了單,還是要業(yè)務(wù)完成后,到成功支付。
3、這個(gè)數(shù)據(jù)是在哪個(gè)環(huán)節(jié)統(tǒng)計(jì)出來(lái)。在注冊(cè)環(huán)節(jié),在下單環(huán)節(jié),在成功支付環(huán)節(jié)。
4、這個(gè)數(shù)據(jù)代表著什么。10萬(wàn)高嗎?與歷史相同比較?是否做了營(yíng)銷活動(dòng)?這個(gè)行業(yè)處理行業(yè)生命同期哪個(gè)階段?在前面二點(diǎn),更多要求你能按業(yè)務(wù)邏輯,來(lái)進(jìn)行數(shù)據(jù)的提取(更多是寫SQL代碼從數(shù)據(jù)庫(kù)取出數(shù)據(jù))。
后面二點(diǎn),更重要是對(duì)業(yè)務(wù)了解,更行業(yè)知識(shí)了解,你才能進(jìn)行相應(yīng)的數(shù)據(jù)解讀,才能讓數(shù)據(jù)產(chǎn)生真正的價(jià)值,不是嗎?對(duì)于新進(jìn)入數(shù)據(jù)行業(yè)或者剛進(jìn)入數(shù)據(jù)行業(yè)的朋友來(lái)說(shuō):行業(yè)知識(shí)都重要,也許你看到很多的數(shù)據(jù)行業(yè)的同仁,在微博或者寫文章說(shuō),數(shù)據(jù)分析思想、行業(yè)知識(shí)、業(yè)務(wù)知識(shí)很重要。我非常同意。
因?yàn)樽鳛閿?shù)據(jù)分析師,在發(fā)表任何觀點(diǎn)的時(shí)候,都不要忘記你居于的背景是什么?但大家一定不要忘記了一些基本的技術(shù),不要把基礎(chǔ)去忘記了,如果一名數(shù)據(jù)分析師不會(huì)寫SQL,那麻煩就大了。哈哈。
你只有把數(shù)據(jù)先取對(duì)了,才能正確的分析,否則一切都是錯(cuò)誤了,甚至?xí)?dǎo)致致命的結(jié)論。
新同學(xué),還是好好花時(shí)間把基礎(chǔ)技能學(xué)好。因?yàn)榛A(chǔ)技能你可以在短期內(nèi)快速提高,但是在行業(yè)、業(yè)務(wù)知識(shí)的是一點(diǎn)一滴的積累起來(lái)的,有時(shí)候是急不來(lái)的,這更需要花時(shí)間慢慢去沉淀下來(lái)。
不要過于追求很高級(jí)、高深的統(tǒng)計(jì)方法,我提倡有空還是要多去學(xué)習(xí)基本的統(tǒng)計(jì)學(xué)知識(shí),從而提高工作效率,達(dá)到事半功倍。以我經(jīng)驗(yàn)來(lái)說(shuō),我負(fù)責(zé)任告訴新進(jìn)的同學(xué),永遠(yuǎn)不要忘記基本知識(shí)、基本技能的學(xué)習(xí)。
二、要有三心。1、細(xì)心。
2、耐心。3、靜心。
數(shù)據(jù)分析師其實(shí)是一個(gè)細(xì)活,特別是在前文提到的例子中的前面二點(diǎn)。而且在數(shù)據(jù)分析過程中,是一個(gè)不斷循環(huán)迭代的過程,所以一定在耐心,不怕麻煩,能靜下心來(lái)不斷去修改自己的分析思路。
三、形成自己結(jié)構(gòu)化的思維。數(shù)據(jù)分析師一定要嚴(yán)謹(jǐn)。
而嚴(yán)謹(jǐn)一定要很強(qiáng)的結(jié)構(gòu)化思維,如何提高結(jié)構(gòu)化思維,也許只需要工作隊(duì)中不斷的實(shí)踐。但是我推薦你用mindmanagement,首先把你的整個(gè)思路整理出來(lái),然后根據(jù)分析不斷深入、得到的信息不斷增加的情況下去完善你的結(jié)構(gòu),慢慢你會(huì)形成一套自己的思想。
當(dāng)然有空的時(shí)候去看看《麥肯錫思維》、結(jié)構(gòu)化邏輯思維訓(xùn)練的書也不錯(cuò)。在我以為多看看你身邊更資深同事的報(bào)告,多問問他們是怎么去考慮這個(gè)問題的,別人的思想是怎么樣的?他是怎么構(gòu)建整個(gè)分析體系的。
四、業(yè)務(wù)、行業(yè)、商業(yè)知識(shí)。當(dāng)你掌握好前面的基本知識(shí)和一些技巧性東西的時(shí)候,你應(yīng)該在業(yè)務(wù)、行業(yè)、商業(yè)知識(shí)的學(xué)習(xí)與積累上了。
這個(gè)放在最后,不是不重要,而且非常重要,如果前面三點(diǎn)是決定你能否進(jìn)入這個(gè)行業(yè),那么這則是你進(jìn)入這個(gè)行業(yè)后,能否成功的最根本的因素。 數(shù)據(jù)與具體行業(yè)知識(shí)的關(guān)系,比作池塘中魚與水的關(guān)系一點(diǎn)都不過分,數(shù)據(jù)(魚)離開了行業(yè)、業(yè)務(wù)背景(水)是死的,是不可能是“活”。
而沒有“魚”的水,更像是“死”水,你去根本不知道看什么(方向在哪)。如何提高業(yè)務(wù)知識(shí),特別是沒有相關(guān)背景的同學(xué)。
很簡(jiǎn)單,我總結(jié)了幾點(diǎn):1、多向業(yè)務(wù)部門的同事請(qǐng)教,多溝通。多向他們請(qǐng)教,數(shù)據(jù)分析師與業(yè)務(wù)部門沒有利益沖突,而更向是共生體,所以如果你態(tài)度好,相信業(yè)務(wù)部門的同事也很愿意把他們知道的告訴你。
2、永遠(yuǎn)不要忘記了google大神,定制一些行業(yè)的關(guān)鍵字,每天都先看看定制的郵件。3、每天有空去瀏。
數(shù)據(jù)分析的三個(gè)常用方法:
1. 數(shù)據(jù)趨勢(shì)分析
趨勢(shì)分析一般而言,適用于產(chǎn)品核心指標(biāo)的長(zhǎng)期跟蹤,比如,點(diǎn)擊率,GMV,活躍用戶數(shù)等。做出簡(jiǎn)單的數(shù)據(jù)趨勢(shì)圖,并不算是趨勢(shì)分析,趨勢(shì)分析更多的是需要明確數(shù)據(jù)的變化,以及對(duì)變化原因進(jìn)行分析。
趨勢(shì)分析,最好的產(chǎn)出是比值。在趨勢(shì)分析的時(shí)候需要明確幾個(gè)概念:環(huán)比,同比,定基比。環(huán)比是指,是本期統(tǒng)計(jì)數(shù)據(jù)與上期比較,例如2019年2月份與2019年1月份相比較,環(huán)比可以知道最近的變化趨勢(shì),但是會(huì)有些季節(jié)性差異。為了消除季節(jié)差異,于是有了同比的概念,例如2019年2月份和2018年2月份進(jìn)行比較。定基比更好理解,就是和某個(gè)基點(diǎn)進(jìn)行比較,比如2018年1月作為基點(diǎn),定基比則為2019年2月和2018年1月進(jìn)行比較。
比如:2019年2月份某APP月活躍用戶數(shù)我2000萬(wàn),相比1月份,環(huán)比增加2%,相比去年2月份,同比增長(zhǎng)20%。趨勢(shì)分析另一個(gè)核心目的則是對(duì)趨勢(shì)做出解釋,對(duì)于趨勢(shì)線中明顯的拐點(diǎn),發(fā)生了什么事情要給出合理的解釋,無(wú)論是外部原因還是內(nèi)部原因。
2. 數(shù)據(jù)對(duì)比分析
數(shù)據(jù)的趨勢(shì)變化獨(dú)立的看,其實(shí)很多情況下并不能說(shuō)明問題,比如如果一個(gè)企業(yè)盈利增長(zhǎng)10%,我們并無(wú)法判斷這個(gè)企業(yè)的好壞,如果這個(gè)企業(yè)所處行業(yè)的其他企業(yè)普遍為負(fù)增長(zhǎng),則5%很多,如果行業(yè)其他企業(yè)增長(zhǎng)平均為50%,則這是一個(gè)很差的數(shù)據(jù)。
對(duì)比分析,就是給孤立的數(shù)據(jù)一個(gè)合理的參考系,否則孤立的數(shù)據(jù)毫無(wú)意義。在此我向大家推薦一個(gè)大數(shù)據(jù)技術(shù)交流圈: 658558542 突破技術(shù)瓶頸,提升思維能力 。
一般而言,對(duì)比的數(shù)據(jù)是數(shù)據(jù)的基本面,比如行業(yè)的情況,全站的情況等。有的時(shí)候,在產(chǎn)品迭代測(cè)試的時(shí)候,為了增加說(shuō)服力,會(huì)人為的設(shè)置對(duì)比的基準(zhǔn)。也就是A/B test。
比較試驗(yàn)最關(guān)鍵的是A/B兩組只保持單一變量,其他條件保持一致。比如測(cè)試首頁(yè)改版的效果,就需要保持A/B兩組用戶質(zhì)量保持相同,上線時(shí)間保持相同,來(lái)源渠道相同等。只有這樣才能得到比較有說(shuō)服力的數(shù)據(jù)。
3. 數(shù)據(jù)細(xì)分分析
在得到一些初步結(jié)論的時(shí)候,需要進(jìn)一步地細(xì)拆,因?yàn)樵谝恍┚C合指標(biāo)的使用過程中,會(huì)抹殺一些關(guān)鍵的數(shù)據(jù)細(xì)節(jié),而指標(biāo)本身的變化,也需要分析變化產(chǎn)生的原因。這里的細(xì)分一定要進(jìn)行多維度的細(xì)拆。常見的拆分方法包括:
分時(shí) :不同時(shí)間短數(shù)據(jù)是否有變化。
分渠道 :不同來(lái)源的流量或者產(chǎn)品是否有變化。
分用戶 :新注冊(cè)用戶和老用戶相比是否有差異,高等級(jí)用戶和低等級(jí)用戶相比是否有差異。
分地區(qū) :不同地區(qū)的數(shù)據(jù)是否有變化。
組成拆分 :比如搜索由搜索詞組成,可以拆分不同搜索詞;店鋪流量由不用店鋪產(chǎn)生,可以分拆不同的店鋪。
細(xì)分分析是一個(gè)非常重要的手段,多問一些為什么,才是得到結(jié)論的關(guān)鍵,而一步一步拆分,就是在不斷問為什么的過程。
完整的數(shù)據(jù)分析流程:
? 業(yè)務(wù)建模。
? 經(jīng)驗(yàn)分析。
? 數(shù)據(jù)準(zhǔn)備。
? 數(shù)據(jù)處理。
? 數(shù)據(jù)分析與展現(xiàn)。
? 專業(yè)報(bào)告。
? 持續(xù)驗(yàn)證與跟蹤。
作為數(shù)據(jù)分析師,無(wú)論最初的職業(yè)定位方向是技術(shù)還是業(yè)務(wù),最終發(fā)到一定階段后都會(huì)承擔(dān)數(shù)據(jù)管理的角色。比如:
數(shù)據(jù)提取:將數(shù)據(jù)取出的過程,數(shù)據(jù)提取的核心環(huán)節(jié)是從哪取、何時(shí)取、如何取。
? 從哪取,數(shù)據(jù)來(lái)源——不同的數(shù)據(jù)源得到的數(shù)據(jù)結(jié)果未必一致。
? 何時(shí)取,提取時(shí)間——不同時(shí)間取出來(lái)的數(shù)據(jù)結(jié)果未必一致。
? 如何取,提取規(guī)則——不同提取規(guī)則下的數(shù)據(jù)結(jié)果很難一致。
在數(shù)據(jù)提取階段,數(shù)據(jù)分析師首先需要具備數(shù)據(jù)提取能力。其次是理解業(yè)務(wù)需求的能力。
總的分兩種:
1 列表法
將實(shí)驗(yàn)數(shù)據(jù)按一定規(guī)律用列表方式表達(dá)出來(lái)是記錄和處理實(shí)驗(yàn)數(shù)據(jù)最常用的方法。表格的設(shè)計(jì)要求對(duì)應(yīng)關(guān)系清楚、簡(jiǎn)單明了、有利于發(fā)現(xiàn)相關(guān)量之間的物理關(guān)系;此外還要求在標(biāo)題欄中注明物理量名稱、符號(hào)、數(shù)量級(jí)和單位等;根據(jù)需要還可以列出除原始數(shù)據(jù)以外的計(jì)算欄目和統(tǒng)計(jì)欄目等。最后還要求寫明表格名稱、主要測(cè)量?jī)x器的型號(hào)、量程和準(zhǔn)確度等級(jí)、有關(guān)環(huán)境條件參數(shù)如溫度、濕度等。
2 作圖法
作圖法可以最醒目地表達(dá)物理量間的變化關(guān)系。從圖線上還可以簡(jiǎn)便求出實(shí)驗(yàn)需要的某些結(jié)果(如直線的斜率和截距值等),讀出沒有進(jìn)行觀測(cè)的對(duì)應(yīng)點(diǎn)(內(nèi)插法),或在一定條件下從圖線的延伸部分讀到測(cè)量范圍以外的對(duì)應(yīng)點(diǎn)(外推法)。此外,還可以把某些復(fù)雜的函數(shù)關(guān)系,通過一定的變換用直線圖表示出來(lái)。例如半導(dǎo)體熱敏電阻的電阻與溫度關(guān)系為,取對(duì)數(shù)后得到,若用半對(duì)數(shù)坐標(biāo)紙,以lgR為縱軸,以1/T為橫軸畫圖,則為一條直線。
數(shù)據(jù)分析(Data Analysis) 數(shù)據(jù)分析概念
數(shù)據(jù)分析是指用適當(dāng)?shù)慕y(tǒng)計(jì)方法對(duì)收集來(lái)的大量第一手資料和第二手資料進(jìn)行分析,以求最大化地開發(fā)數(shù)據(jù)資料的功能,發(fā)揮數(shù)據(jù)的作用。是為了提取有用信息和形成結(jié)論而對(duì)數(shù)據(jù)加以詳細(xì)研究和概括總結(jié)的過程。
數(shù)據(jù)也稱觀測(cè)值,是實(shí)驗(yàn)、測(cè)量、觀察、調(diào)查等的結(jié)果,常以數(shù)量的形式給出。
數(shù)據(jù)分析與數(shù)據(jù)挖掘密切相關(guān),但數(shù)據(jù)挖掘往往傾向于關(guān)注較大型的數(shù)據(jù)集,較少側(cè)重于推理,且常常采用的是最初為另外一種不同目的而采集的數(shù)據(jù)。 數(shù)據(jù)分析的目的與意義
數(shù)據(jù)分析的目的是把隱沒在一大批看來(lái)雜亂無(wú)章的數(shù)據(jù)中的信息集中、萃取和提煉出來(lái),以找出所研究對(duì)象的內(nèi)在規(guī)律。
數(shù)據(jù)分析是指用適當(dāng)?shù)慕y(tǒng)計(jì)分析方法對(duì)收集來(lái)的大量數(shù)據(jù)進(jìn)行分析,將它們加以匯總和理解并消化,以求最大化地開發(fā)數(shù)據(jù)的功能,發(fā)揮數(shù)據(jù)的作用。數(shù)據(jù)分析是為了提取有用信息和形成結(jié)論而對(duì)數(shù)據(jù)加以詳細(xì)研究和概括總結(jié)的過程。數(shù)據(jù)也稱觀測(cè)值,是實(shí)驗(yàn)、測(cè)量、觀察、調(diào)查等的結(jié)果,常以數(shù)量的形式給出。通過不斷的摸索與發(fā)展,現(xiàn)形成了一門獨(dú)立的學(xué)科——數(shù)據(jù)挖掘與客戶關(guān)系管理碩士。
具體方法
數(shù)據(jù)分析有極廣泛的應(yīng)用范圍。典型的數(shù)據(jù)分析可能包含以下三個(gè)步:
1、探索性數(shù)據(jù)分析:當(dāng)數(shù)據(jù)剛?cè)〉脮r(shí),可能雜亂無(wú)章,看不出規(guī)律,通過作圖、造表、用各種形式的方程擬合,計(jì)算某些特征量等手段探索規(guī)律性的可能形式,即往什么方向和用何種方式去尋找和揭示隱含在數(shù)據(jù)中的規(guī)律性。
2、模型選定分析,在探索性分析的基礎(chǔ)上提出一類或幾類可能的模型,然后通過進(jìn)一步的分析從中挑選一定的模型。
3、推斷分析:通常使用數(shù)理統(tǒng)計(jì)方法對(duì)所定模型或估計(jì)的可靠程度和精確程度作出推斷。
數(shù)據(jù)分析軟件:
Excel是最簡(jiǎn)單的,但是也就只能做很簡(jiǎn)單的數(shù)據(jù)分析
Finereport 兼顧了基本的數(shù)據(jù)錄入與展現(xiàn)功能,一般的數(shù)據(jù)源都支持,學(xué)習(xí)成本比較低,比較適合企業(yè)級(jí)用戶使用
聲明:本網(wǎng)站尊重并保護(hù)知識(shí)產(chǎn)權(quán),根據(jù)《信息網(wǎng)絡(luò)傳播權(quán)保護(hù)條例》,如果我們轉(zhuǎn)載的作品侵犯了您的權(quán)利,請(qǐng)?jiān)谝粋€(gè)月內(nèi)通知我們,我們會(huì)及時(shí)刪除。
蜀ICP備2020033479號(hào)-4 Copyright ? 2016 學(xué)習(xí)鳥. 頁(yè)面生成時(shí)間:3.350秒