1. Analytic Visualizations(可視化分析)
不管是對數(shù)據(jù)分析專家還是普通用戶,數(shù)據(jù)可視化是數(shù)據(jù)分析工具最基本的要求。可視化可以直觀的展示數(shù)據(jù),讓數(shù)據(jù)自己說話,讓觀眾聽到結果。
2. Data Mining Algorithms(數(shù)據(jù)挖掘算法)
可視化是給人看的,數(shù)據(jù)挖掘就是給機器看的。集群、分割、孤立點分析還有其他的算法讓我們深入數(shù)據(jù)內(nèi)部,挖掘價值。這些算法不僅要處理大數(shù)據(jù)的量,也要處理大數(shù)據(jù)的速度。
3. Predictive Analytic Capabilities(預測性分析能力)
數(shù)據(jù)挖掘可以讓分析員更好的理解數(shù)據(jù),而預測性分析可以讓分析員根據(jù)可視化分析和數(shù)據(jù)挖掘的結果做出一些預測性的判斷。
4. Semantic Engines(語義引擎)
由于非結構化數(shù)據(jù)的多樣性帶來了數(shù)據(jù)分析的新的挑戰(zhàn),需要一系列的工具去解析,提取,分析數(shù)據(jù)。語義引擎需要被設計成能夠從“文檔”中智能提取信息。
5. Data Quality and Master Data Management(數(shù)據(jù)質量和數(shù)據(jù)管理)
數(shù)據(jù)質量和數(shù)據(jù)管理是一些管理方面的最佳實踐。通過標準化的流程和工具對數(shù)據(jù)進行處理可以保證一個預先定義好的高質量的分析結果。
在大數(shù)據(jù)時代,數(shù)據(jù)挖掘是最關鍵的工作。大數(shù)據(jù)的挖掘是從海量、不完全的、有噪聲的、模糊的、隨機的大型數(shù)據(jù)庫中發(fā)現(xiàn)隱含在其中有價值的、潛在有用的信息和知識的過程,也是一種決策支持過程。其主要基于人工智能,機器學習,模式學習,統(tǒng)計學等。通過對大數(shù)據(jù)高度自動化地分析,做出歸納性的推理,從中挖掘出潛在的模式,可以幫助企業(yè)、商家、用戶調整市場政策、減少風險、理性面對市場,并做出正確的決策。目前,在很多領域尤其是在商業(yè)領域如銀行、電信、電商等,數(shù)據(jù)挖掘可以解決很多問題,包括市場營銷策略制定、背景分析、企業(yè)管理危機等。大數(shù)據(jù)的挖掘常用的方法有分類、回歸分析、聚類、關聯(lián)規(guī)則、神經(jīng)網(wǎng)絡方法、Web 數(shù)據(jù)挖掘等。這些方法從不同的角度對數(shù)據(jù)進行挖掘。
(1)分類。分類是找出數(shù)據(jù)庫中的一組數(shù)據(jù)對象的共同特點并按照分類模式將其劃分為不同的類,其目的是通過分類模型,將數(shù)據(jù)庫中的數(shù)據(jù)項映射到摸個給定的類別中。可以應用到涉及到應用分類、趨勢預測中,如淘寶商鋪將用戶在一段時間內(nèi)的購買情況劃分成不同的類,根據(jù)情況向用戶推薦關聯(lián)類的商品,從而增加商鋪的銷售量。
(2)回歸分析。回歸分析反映了數(shù)據(jù)庫中數(shù)據(jù)的屬性值的特性,通過函數(shù)表達數(shù)據(jù)映射的關系來發(fā)現(xiàn)屬性值之間的依賴關系。它可以應用到對數(shù)據(jù)序列的預測及相關關系的研究中去。在市場營銷中,回歸分析可以被應用到各個方面。如通過對本季度銷售的回歸分析,對下一季度的銷售趨勢作出預測并做出針對性的營銷改變。
(3)聚類。聚類類似于分類,但與分類的目的不同,是針對數(shù)據(jù)的相似性和差異性將一組數(shù)據(jù)分為幾個類別。屬于同一類別的數(shù)據(jù)間的相似性很大,但不同類別之間數(shù)據(jù)的相似性很小,跨類的數(shù)據(jù)關聯(lián)性很低。
(4)關聯(lián)規(guī)則。關聯(lián)規(guī)則是隱藏在數(shù)據(jù)項之間的關聯(lián)或相互關系,即可以根據(jù)一個數(shù)據(jù)項的出現(xiàn)推導出其他數(shù)據(jù)項的出現(xiàn)。關聯(lián)規(guī)則的挖掘過程主要包括兩個階段:第一階段為從海量原始數(shù)據(jù)中找出所有的高頻項目組;第二極端為從這些高頻項目組產(chǎn)生關聯(lián)規(guī)則。關聯(lián)規(guī)則挖掘技術已經(jīng)被廣泛應用于金融行業(yè)企業(yè)中用以預測客戶的需求,各銀行在自己的ATM 機上通過捆綁客戶可能感興趣的信息供用戶了解并獲取相應信息來改善自身的營銷。
(5)神經(jīng)網(wǎng)絡方法。神經(jīng)網(wǎng)絡作為一種先進的人工智能技術,因其自身自行處理、分布存儲和高度容錯等特性非常適合處理非線性的以及那些以模糊、不完整、不嚴密的知識或數(shù)據(jù)為特征的處理問題,它的這一特點十分適合解決數(shù)據(jù)挖掘的問題。典型的神經(jīng)網(wǎng)絡模型主要分為三大類:第一類是以用于分類預測和模式識別的前饋式神經(jīng)網(wǎng)絡模型,其主要代表為函數(shù)型網(wǎng)絡、感知機;第二類是用于聯(lián)想記憶和優(yōu)化算法的反饋式神經(jīng)網(wǎng)絡模型,以Hopfield 的離散模型和連續(xù)模型為代表。第三類是用于聚類的自組織映射方法,以ART 模型為代表。雖然神經(jīng)網(wǎng)絡有多種模型及算法,但在特定領域的數(shù)據(jù)挖掘中使用何種模型及算法并沒有統(tǒng)一的規(guī)則,而且人們很難理解網(wǎng)絡的學習及決策過程。
(6)Web數(shù)據(jù)挖掘。Web數(shù)據(jù)挖掘是一項綜合性技術,指Web 從文檔結構和使用的集合C 中發(fā)現(xiàn)隱含的模式P,如果將C看做是輸入,P 看做是輸出,那么Web 挖掘過程就可以看做是從輸入到輸出的一個映射過程。其流程:發(fā)現(xiàn)資源;信息選擇和預處理;模式識別;模式分析。
當前越來越多的Web 數(shù)據(jù)都是以數(shù)據(jù)流的形式出現(xiàn)的,因此對Web 數(shù)據(jù)流挖掘就具有很重要的意義。目前常用的Web數(shù)據(jù)挖掘算法有:PageRank算法,HITS算法以及LOGSOM 算法。這三種算法提到的用戶都是籠統(tǒng)的用戶,并沒有區(qū)分用戶的個體。目前Web 數(shù)據(jù)挖掘面臨著一些問題,包括:用戶的分類問題、網(wǎng)站內(nèi)容時效性問題,用戶在頁面停留時間問題,頁面的鏈入與鏈出數(shù)問題等。在Web 技術高速發(fā)展的今天,這些問題仍舊值得研究并加以解決。
謝邀。
大數(shù)據(jù)挖掘的方法:神經(jīng)網(wǎng)絡方法神經(jīng)網(wǎng)絡由于本身良好的魯棒性、自組織自適應性、并行處理、分布存儲和高度容錯等特性非常適合解決數(shù)據(jù)挖掘的問題,因此近年來越來越受到人們的關注。遺傳算法遺傳算法是一種基于生物自然選擇與遺傳機理的隨機搜索算法,是一種仿生全局優(yōu)化方法。
遺傳算法具有的隱含并行性、易于和其它模型結合等性質使得它在數(shù)據(jù)挖掘中被加以應用。決策樹方法決策樹是一種常用于預測模型的算法,它通過將大量數(shù)據(jù)有目的分類,從中找到一些有價值的,潛在的信息。
它的主要優(yōu)點是描述簡單,分類速度快,特別適合大規(guī)模的數(shù)據(jù)處理。粗集方法粗集理論是一種研究不精確、不確定知識的數(shù)學工具。
粗集方法有幾個優(yōu)點:不需要給出額外信息;簡化輸入信息的表達空間;算法簡單,易于操作。粗集處理的對象是類似二維關系表的信息表。
覆蓋正例排斥反例方法它是利用覆蓋所有正例、排斥所有反例的思想來尋找規(guī)則。首先在正例集合中任選一個種子,到反例集合中逐個比較。
與字段取值構成的選擇子相容則舍去,相反則保留。按此思想循環(huán)所有正例種子,將得到正例的規(guī)則(選擇子的合取式)。
統(tǒng)計分析方法在數(shù)據(jù)庫字段項之間存在兩種關系:函數(shù)關系和相關關系,對它們的分析可采用統(tǒng)計學方法,即利用統(tǒng)計學原理對數(shù)據(jù)庫中的信息進行分析。可進行常用統(tǒng)計、回歸分析、相關分析、差異分析等。
模糊集方法即利用模糊集合理論對實際問題進行模糊評判、模糊決策、模糊模式識別和模糊聚類分析。系統(tǒng)的復雜性越高,模糊性越強,一般模糊集合理論是用隸屬度來刻畫模糊事物的亦此亦彼性的。
主要有分類、回歸分析、聚類、關聯(lián)規(guī)則、特征、變化和偏差分析、Web頁挖掘等,它們分別從不同的角度對數(shù)據(jù)進行挖掘。
分類是找出數(shù)據(jù)庫中一組數(shù)據(jù)對象的共同特點并按照分類模式將其劃分為不同的類,其目的是通過分類模型,將數(shù)據(jù)庫中的數(shù)據(jù)項映射到某個給定的類別。回歸分析方法反映的是事務數(shù)據(jù)庫中屬性值在時間上的特征,產(chǎn)生一個將數(shù)據(jù)項映射到一個實值預測變量的函數(shù),發(fā)現(xiàn)變量或屬性間的依賴關系,其主要研究問題包括數(shù)據(jù)序列的趨勢特征、數(shù)據(jù)序列的預測以及數(shù)據(jù)間的相關關系等。
擴展資料:傳統(tǒng)的聚類分析計算方法主要有如下幾種:1、劃分方法(partitioning methods) 給定一個有N個元組或者紀錄的數(shù)據(jù)集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。而且這K個分組滿足下列條件:(1) 每一個分組至少包含一個數(shù)據(jù)紀錄。
(2)每一個數(shù)據(jù)紀錄屬于且僅屬于一個分組(注意:這個要求在某些模糊聚類算法中可以放寬);對于給定的K,算法首先給出一個初始的分組方法,以后通過反復迭代的方法改變分組,使得每一次改進之后的分組方案都較前一次好。而所謂好的標準就是:同一分組中的記錄越近越好,而不同分組中的紀錄越遠越好。
使用這個基本思想的算法有:K-MEANS算法、K-MEDOIDS算法、CLARANS算法;大部分劃分方法是基于距離的。給定要構建的分區(qū)數(shù)k,劃分方法首先創(chuàng)建一個初始化劃分。
然后,它采用一種迭代的重定位技術,通過把對象從一個組移動到另一個組來進行劃分。一個好的劃分的一般準備是:同一個簇中的對象盡可能相互接近或相關,而不同的簇中的對象盡可能遠離或不同。
還有許多評判劃分質量的其他準則。傳統(tǒng)的劃分方法可以擴展到子空間聚類,而不是搜索整個數(shù)據(jù)空間。
當存在很多屬性并且數(shù)據(jù)稀疏時,這是有用的。為了達到全局最優(yōu),基于劃分的聚類可能需要窮舉所有可能的劃分,計算量極大。
實際上,大多數(shù)應用都采用了流行的啟發(fā)式方法,如k-均值和k-中心算法,漸近的提高聚類質量,逼近局部最優(yōu)解。這些啟發(fā)式聚類方法很適合發(fā)現(xiàn)中小規(guī)模的數(shù)據(jù)庫中小規(guī)模的數(shù)據(jù)庫中的球狀簇。
為了發(fā)現(xiàn)具有復雜形狀的簇和對超大型數(shù)據(jù)集進行聚類,需要進一步擴展基于劃分的方法。2、層次方法(hierarchical methods) 這種方法對給定的數(shù)據(jù)集進行層次似的分解,直到某種條件滿足為止。
具體又可分為“自底向上”和“自頂向下”兩種方案。例如在“自底向上”方案中,初始時每一個數(shù)據(jù)紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合并成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。
代表算法有:BIRCH算法、CURE算法、CHAMELEON算法等;層次聚類方法可以是基于距離的或基于密度或連通性的。層次聚類方法的一些擴展也考慮了子空間聚類。
層次方法的缺陷在于,一旦一個步驟(合并或分裂)完成,它就不能被撤銷。這個嚴格規(guī)定是有用的,因為不用擔心不同選擇的組合數(shù)目,它將產(chǎn)生較小的計算開銷。
然而這種技術不能更正錯誤的決定。已經(jīng)提出了一些提高層次聚類質量的方法。
在統(tǒng)計學中,回歸分析(regression analysis)指的是確定兩種或兩種以上變量間相互依賴的定量關系的一種統(tǒng)計分析方法。回歸分析按照涉及的變量的多少,分為一元回歸和多元回歸分析。
按照因變量的多少,可分為簡單回歸分析和多重回歸分析;按照自變量和因變量之間的關系類型,可分為線性回歸分析和非線性回歸分析。在大數(shù)據(jù)分析中,回歸分析是一種預測性的建模技術,它研究的是因變量(目標)和自變量(預測器)之間的關系。
這種技術通常用于預測分析,時間序列模型以及發(fā)現(xiàn)變量之間的因果關系。例如,司機的魯莽駕駛與道路交通事故數(shù)量之間的關系,最好的研究方法就是回歸。
1、Linear Regression線性回歸 它是最為人熟知的建模技術之一。線性回歸通常是人們在學習預測模型時首選的技術之一。
在這種技術中,因變量是連續(xù)的,自變量可以是連續(xù)的也可以是離散的,回歸線的性質是線性的。線性回歸使用最佳的擬合直線(也就是回歸線)在因變量(Y)和一個或多個自變量(X)之間建立一種關系。
多元線性回歸可表示為Y=a+b1X +b2X2+ e,其中a表示截距,b表示直線的斜率,e是誤差項。多元線性回歸可以根據(jù)給定的預測變量(s)來預測目標變量的值。
2、Polynomial Regression多項式回歸 對于一個回歸方程,如果自變量的指數(shù)大于1,那么它就是多項式回歸方程。如下方程所示:y=a+bx2,在這種回歸技術中,最佳擬合線不是直線。
而是一個用于擬合數(shù)據(jù)點的曲線。參考資料:百度百科-回歸分析 參考資料:百度百科-聚類 參考資料:百度百科-分類 參考資料:百度百科-關聯(lián)規(guī)則。
利用數(shù)據(jù)挖掘進行數(shù)據(jù)分析常用的方法主要有分類、回歸分析、聚類、關聯(lián)規(guī)則、特征、變化和偏差分析、Web頁挖掘等,它們分別從不同的角度對數(shù)據(jù)進行挖掘。
分類是找出數(shù)據(jù)庫中一組數(shù)據(jù)對象的共同特點并按照分類模式將其劃分為不同的類,其目的是通過分類模型,將數(shù)據(jù)庫中的數(shù)據(jù)項映射到某個給定的類別。 回歸分析方法反映的是事務數(shù)據(jù)庫中屬性值在時間上的特征,產(chǎn)生一個將數(shù)據(jù)項映射到一個實值預測變量的函數(shù),發(fā)現(xiàn)變量或屬性間的依賴關系,其主要研究問題包括數(shù)據(jù)序列的趨勢特征、數(shù)據(jù)序列的預測以及數(shù)據(jù)間的相關關系等。
聚類分析是把一組數(shù)據(jù)按照相似性和差異性分為幾個類別,其目的是使得屬于同一類別的數(shù)據(jù)間的相似性盡可能大,不同類別中的數(shù)據(jù)間的相似性盡可能小。 關聯(lián)規(guī)則是描述數(shù)據(jù)庫中數(shù)據(jù)項之間所存在的關系的規(guī)則,即根據(jù)一個事務中某些項的出現(xiàn)可導出另一些項在同一事務中也出現(xiàn),即隱藏在數(shù)據(jù)間的關聯(lián)或相互關系。
特征分析是從數(shù)據(jù)庫中的一組數(shù)據(jù)中提取出關于這些數(shù)據(jù)的特征式,這些特征式表達了該數(shù)據(jù)集的總體特征。 。
總的分兩種:
1 列表法
將實驗數(shù)據(jù)按一定規(guī)律用列表方式表達出來是記錄和處理實驗數(shù)據(jù)最常用的方法。表格的設計要求對應關系清楚、簡單明了、有利于發(fā)現(xiàn)相關量之間的物理關系;此外還要求在標題欄中注明物理量名稱、符號、數(shù)量級和單位等;根據(jù)需要還可以列出除原始數(shù)據(jù)以外的計算欄目和統(tǒng)計欄目等。最后還要求寫明表格名稱、主要測量儀器的型號、量程和準確度等級、有關環(huán)境條件參數(shù)如溫度、濕度等。
2 作圖法
作圖法可以最醒目地表達物理量間的變化關系。從圖線上還可以簡便求出實驗需要的某些結果(如直線的斜率和截距值等),讀出沒有進行觀測的對應點(內(nèi)插法),或在一定條件下從圖線的延伸部分讀到測量范圍以外的對應點(外推法)。此外,還可以把某些復雜的函數(shù)關系,通過一定的變換用直線圖表示出來。例如半導體熱敏電阻的電阻與溫度關系為,取對數(shù)后得到,若用半對數(shù)坐標紙,以lgR為縱軸,以1/T為橫軸畫圖,則為一條直線。
大數(shù)據(jù)環(huán)境有以下這些特點, 因此涉及的挖掘技術也與之對應:
1.數(shù)據(jù)來源多, 大數(shù)據(jù)挖掘的研究對象往往不只涉及一個業(yè)務系統(tǒng), 肯定是多個系統(tǒng)的融合分析, 因此,需要強大的ETL技術, 將多個系統(tǒng)的數(shù)據(jù)整合到一起, 并且, 多個系統(tǒng)的數(shù)據(jù)可能標準不同, 需要清洗。
2.數(shù)據(jù)的維度高, 整合起來的數(shù)據(jù)就不只傳統(tǒng)數(shù)據(jù)挖掘的那一些維度了, 可能成百上千維, 這需要降維技術了。
3.大數(shù)據(jù)量的計算, 在單臺服務器上是計算不了的, 這就需要使用分布式計算, 所以要掌握各種分布式計算框架, 像hadoop, spark之類, 需要掌握機器學習算法的分布式實現(xiàn)。
聲明:本網(wǎng)站尊重并保護知識產(chǎn)權,根據(jù)《信息網(wǎng)絡傳播權保護條例》,如果我們轉載的作品侵犯了您的權利,請在一個月內(nèi)通知我們,我們會及時刪除。
蜀ICP備2020033479號-4 Copyright ? 2016 學習鳥. 頁面生成時間:2.887秒